Daniel F. Klessig

University of British Columbia - Vancouver, Vancouver, British Columbia, Canada

Are you Daniel F. Klessig?

Claim your profile

Publications (241)1722.15 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death.
    PLoS ONE 12/2015; 10(11):e0143447. DOI:10.1371/journal.pone.0143447 · 3.23 Impact Factor
  • Source

  • Source
    Dataset: 15 148 Choi

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant defense responses against pathogens are triggered by perception of conserved microbe-associated molecular patterns (MAMPs). However, it remained unknown whether plants are able to detect conserved molecular patterns derived from nematodes, which likely represent the most abundant animals on earth. Here we show that plant parasitic nematodes produce small molecules called ascarosides (ascr), an evolutionarily conserved family of nematode pheromones, and that plants respond to these molecules by activating systemic defenses against a broad spectrum of pathogens. Low concentrations of ascr#18 (1nM-1µM), the most abundant ascaroside in plant parasitic nematodes, induce hallmark of defense responses in plants. Ascr#18 induced both salicylic acid- and jasmonic acid-mediated defense signaling pathways and enhanced resistance to virus, bacteria and nematode in Arabidopsis. Furthermore, we show that ascr#18 perception via roots or leaves increases resistance in tomato, potato, and barley to foliar bacterial, oomycete, or fungal pathogens. Our results indicate that monocots and dicots recognize ascarosides as a conserved molecular signature of nematodes that triggers conserved plant defense signaling pathways, similar to perception of MAMPs. Using potent small-molecule signals such as ascarosides to activate plant immune systems and protect plants against pathogens and pests has potential to improve the economic and environmental sustainability of agriculture.
    American phytopathological society (APS), Pasadena, CA; 08/2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.
    Nature Communications 07/2015; 6. DOI:10.1038/ncomms8795 · 11.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever, and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke, and certain cancers. Since aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by NMR spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemo-attractant activity of fully reduced HMGB1 and the increased expression of pro-inflammatory cytokine genes and COX-2 induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemo-attractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its pro-inflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.
    Molecular Medicine 06/2015; 21. DOI:10.2119/molmed.2015.00148 · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Microrchidia (MORC) proteins, a subset of the GHKL ATPase superfamily, were recently described as components involved in transcriptional gene silencing and plant immunity in Arabidopsis. To assess the role of MORC1 during resistance to Phytophthora infestans in Solanaceous species, we altered the expression of the corresponding MORC1 homologs in potato, tomato, and Nicotiana benthamiana. Basal resistance to P. infestans was compromised in StMORC1-silenced potato and enhanced in overexpressing lines, indicating that StMORC1 positively affects immunity. By contrast, silencing SlMORC1 expression in tomato or NbMORC1 expression in N. benthamiana enhanced basal resistance to this oomycete pathogen. In addition, silencing SlMORC1 further enhanced resistance conferred by two resistance genes in tomato. Transient expression of StMORC1 in N. benthamiana accelerated cell death induced by infestin1 (INF1), whereas SlMORC1 or NbMORC1 suppressed it. Domain-swapping and mutational analyses indicated that the C-terminal region dictate the species-specific effects of the Solanaceous MORC1 proteins on INF1-induced cell death. This C-terminal region also was required for homodimerization and phosphorylation of recombinant StMORC1 and SlMORC1, and its transient expression induced spontaneous cell death in N. benthamiana. Thus, this C-terminal region likely plays important roles in both determining and modulating the biological activity of MORC1 proteins.
    Molecular Plant-Microbe Interactions 03/2015; 28(8). DOI:10.1094/MPMI-12-14-0401-R · 3.94 Impact Factor
  • Source

  • Source

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA’s direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato Bushy Stunt Virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-) RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication.
    Molecular Plant-Microbe Interactions 01/2015; 28(4). DOI:10.1094/MPMI-09-14-0259-R · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [(3)H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays.
    Frontiers in Plant Science 01/2015; 5:777. DOI:10.3389/fpls.2014.00777 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown.The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants.Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing.These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.
    New Phytologist 11/2014; 205(3). DOI:10.1111/nph.13137 · 7.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thimet oligopeptidase (TOP) is a zinc-dependent metallopeptidase. Recent studies suggest that Arabidopsis thaliana TOP1 and TOP2 are targets for salicylic acid (SA) binding and participate in SA-mediated plant innate immunity. The crystal structure of A. thaliana TOP2 has been determined at 3.0 Å resolution. Comparisons to the structure of human TOP revealed good overall structural conservation, especially in the active-site region, despite their weak sequence conservation. The protein sample was incubated with the photo-activated SA analog 4-azido-SA and exposed to UV irradiation before crystallization. However, there was no conclusive evidence for the binding of SA based on the X-ray diffraction data. Further studies are needed to elucidate the molecular mechanism of how SA regulates the activity of A. thaliana TOP1 and TOP2.
    Acta Crystallographica Section F: Structural Biology Communications 05/2014; 70(Pt 5):555-9. DOI:10.1107/S2053230X14006128
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MORC1 and MORC2, two of the seven members of the Arabidopsis thaliana CRT1 (compromised recognition of TCV) subfamily of microrchidia (MORC) GHKL ATPases, were previously shown to be required in multiple layers of plant immunity. Here we show that the Hordeum vulgare MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37-48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knock-down (KD) of MORC in barley resulted in enhanced basal resistance and effector-triggered, MLA12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f.sp. hordei), while MORC overexpression decreased resistance. Moreover, barley KD mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley vs. Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss of transposon gene silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other's function. Together these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species.
    Plant physiology 01/2014; 164(2). DOI:10.1104/pp.113.227488 · 6.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant viruses often encode suppressors of host RNA silencing machinery, which occasionally function as avirulence factors that are recognized by host resistance (R) proteins. For example, the Arabidopsis R protein, hypersensitive response to TCV (HRT), recognizes the turnip crinkle virus (TCV) coat protein (CP). HRT-mediated resistance requires the RNA-silencing component double-stranded RNA-binding protein 4 (DRB4) even though it neither is associated with the accumulation of TCV-specific small RNA nor requires the RNA silencing suppressor function of CP. HRT interacts with the cytosolic fraction of DRB4. Interestingly, TCV infection both increases the cytosolic DRB4 pool and inhibits the HRT-DRB4 interaction. The virulent R8A CP derivative, which induces a subset of HRT-derived responses, also disrupts this interaction. The differential localization of DRB4 in the presence of wild-type and R8A CP implies the importance of subcellular compartmentalization of DRB4. The requirement of DRB4 in resistance to bacterial infection suggests a universal role in R-mediated defense signaling.
    Cell Reports 09/2013; 4(6). DOI:10.1016/j.celrep.2013.08.018 · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis thaliana CRT1 (compromised for recognition of Turnip Crinkle Virus) was previously shown to be required for effector-triggered immunity. Sequence analyses previously revealed that CRT1 contains the ATPase and S5 domains characteristic of Microchidia (MORC) proteins; these proteins are associated with DNA modification and repair. Here we show that CRT1 and its closest homologue, CRH1, are also required for pathogen-associated molecular pattern (PAMP)-triggered immunity, basal resistance, non-host resistance and systemic acquired resistance. Consistent with its role in PAMP-triggered immunity, CRT1 interacted with the PAMP recognition receptor FLS2. Subcellular fractionation and transmission electron microscopy detected a subpopulation of CRT1 in the nucleus, whose levels increased following PAMP treatment or infection with an avirulent pathogen. These results, combined with the demonstration that CRT1 binds DNA, exhibits endonuclease activity, and affects tolerance to the DNA-damaging agent mitomycin C, argue that this prototypic eukaryotic member of the MORC superfamily has important nuclear functions during immune response activation.
    Nature Communications 12/2012; 3:1297. DOI:10.1038/ncomms2279 · 11.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salicylic acid (SA) is a small phenolic molecule that not only is the active ingredient in the multi-functional drug aspirin, but also serves as a plant hormone that affects diverse processes during growth, development, responses to abiotic stresses and disease resistance. Although a number of SA-binding proteins (SABPs) have been identified, the underlying mechanisms of action of SA remain largely unknown. Efforts to identify additional SA targets, and thereby elucidate the complex SA signaling network in plants, have been hindered by the lack of effective approaches. Here, we report two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SABPs from Arabidopsis. Using these approaches, multiple proteins, including the E2 subunit of α-ketoglutarate dehydrogenase and the glutathione S-transferases GSTF2, GSTF8, GSTF10 and GSTF11, were identified as SABPs. Their association with SA was further substantiated by the ability of SA to inhibit their enzymatic activity. The photoaffinity labeling and surface plasmon resonance-based approaches appear to be more sensitive than the traditional approach for identifying plant SABPs using size-exclusion chromatography with radiolabeled SA, as these proteins exhibited little to no SA-binding activity in such an assay. The development of these approaches therefore complements conventional techniques and helps dissect the SA signaling network in plants, and may also help elucidate the mechanisms through which SA acts as a multi-functional drug in mammalian systems.
    The Plant Journal 10/2012; 72(6). DOI:10.1111/tpj.12016 · 5.97 Impact Factor
  • D'Maris Amick Dempsey · Daniel F Klessig ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Following pathogen infection, activation of systemic acquired resistance (SAR) in uninfected tissues requires transmission of a signal(s) from the infected tissue via the vasculature. Several candidates for this long-distance signal have been identified, including methyl salicylate (MeSA), an SFD1/GLY1-derived glycerol-3-phosphate (G3P)-dependent signal, the lipid-transfer protein DIR1, the dicarboxylic acid azelaic acid (AzA), the abietane diterpenoid dehydroabietinal (DA), jasmonic acid (JA), and the amino acid-derivative pipecolic acid (Pip). Some of these signals work cooperatively to activate SAR and/or regulate MeSA metabolism. However, Pip appears to activate SAR via an independent pathway that may impinge on these other signaling pathway(s) during de novo salicylic acid (SA) biosynthesis in the systemic tissue. Thus, a complex web of cross-interacting signals appears to activate SAR.
    Trends in Plant Science 06/2012; 17(9):538-45. DOI:10.1016/j.tplants.2012.05.011 · 12.93 Impact Factor
  • Magali Moreau · Miaoying Tian · Daniel F Klessig ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Salicylic acid (SA) is widely recognized as a key player in plant immunity. While several proteins have been previously identified as the direct targets of SA, SA-mediated plant defense signaling mechanisms remain unclear. The Nature paper from Xinnian Dong's group demonstrates that the NPR1 paralogues NPR3 and NPR4 directly bind SA, and this binding modulates their interaction with NPR1 and thereby degradation of this key positive regulator of SA-mediated defense, shedding important new insight into the mechanism(s) of SA-mediated, NPR1-dependent plant defense signal transduction.
    Cell Research 06/2012; 22(12). DOI:10.1038/cr.2012.100 · 12.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytopathogens can manipulate plant hormone signaling to access nutrients and counteract defense responses. Pseudomonas syringae produces coronatine, a toxin that mimics the plant hormone jasmonic acid isoleucine and promotes opening of stomata for bacterial entry, bacterial growth in the apoplast, systemic susceptibility, and disease symptoms. We examined the mechanisms underlying coronatine-mediated virulence and show that coronatine activates three homologous NAC transcription factor (TF) genes, ANAC019, ANAC055, and ANAC072, through direct activity of the TF, MYC2. Genetic characterization of NAC TF mutants demonstrates that these TFs mediate coronatine-induced stomatal reopening and bacterial propagation in both local and systemic tissues by inhibiting the accumulation of the key plant immune signal salicylic acid (SA). These NAC TFs exert this inhibitory effect by repressing ICS1 and activating BSMT1, genes involved in SA biosynthesis and metabolism, respectively. Thus, a signaling cascade by which coronatine confers its multiple virulence activities has been elucidated.
    Cell Host & Microbe 06/2012; 11(6):587-596. · 12.33 Impact Factor

Publication Stats

25k Citations
1,722.15 Total Impact Points


  • 2015
    • University of British Columbia - Vancouver
      Vancouver, British Columbia, Canada
    • Zhejiang University
      • Department of Horticulture
      Hang-hsien, Zhejiang Sheng, China
  • 2001-2015
    • Thompson Institute
      Итак, New York, United States
  • 2004-2014
    • Cornell University
      • Department of Plant Biology
      Итак, New York, United States
    • University of Toronto
      Toronto, Ontario, Canada
  • 2008
    • University of Michigan
      • Department of Molecular, Cellular and Developmental Biology
      Ann Arbor, Michigan, United States
    • Yale University
      • Department of Molecular, Cellular and Developmental Biology
      New Haven, Connecticut, United States
  • 2006
    • University of Kentucky
      • Department of Plant Pathology
      Lexington, Kentucky, United States
  • 1988-2003
    • Rutgers, The State University of New Jersey
      • Department of Molecular Biology and Biochemistry
      New Brunswick, New Jersey, United States
  • 2000
    • University of Missouri
      • Department of Biochemistry
      Columbia, MO, United States
  • 1998
    • University of California, Riverside
      Riverside, California, United States
  • 1997
    • Massachusetts General Hospital
      Boston, Massachusetts, United States
  • 1995-1997
    • Duke University
      • Department of Biology
      Durham, North Carolina, United States
  • 1991
    • Le ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec
      Québec, Quebec, Canada
  • 1989
    • Washington University in St. Louis
      • Department of Biology
      San Luis, Missouri, United States
  • 1982-1987
    • University of Utah
      • School of Medicine
      Salt Lake City, Utah, United States
  • 1976-1982
    • Cold Spring Harbor Laboratory
      コールド・スプリング・ハーバー, New York, United States