Ebbe Nordlander

Lund University, Lund, Skåne, Sweden

Are you Ebbe Nordlander?

Claim your profile

Publications (137)312.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Enantioselective hydrogenation of tiglic acid effected by diastereomers of the general formula [(μ-H)2Ru3(μ3-S)(CO)7(μ-P-P*)] (P-P* = chiral Walphos diphosphine ligand) strongly supports catalysis by intact Ru3 clusters. A catalytic mechanism involving Ru3 clusters has been established by DFT calculations.
    Chemical communications (Cambridge, England). 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel neutral and cationic methylpalladium complexes bearing N-alkyl-2,2′-dipyridylaldiminato ligands were prepared and characterized. In the presence of ethylene, the cationic complexes were active as dimerization catalysts, producing a mixture of 1- and 2-butenes. A Pd–ethyl π-ethylene species was identified as the catalyst resting state by low-temperature spectroscopic and DFT studies, which provided insights into the effect of both steric and electronic factors on the observed reactivity.
    Organometallics 04/2014; · 4.15 Impact Factor
  • Source
    Biswanath Das, Matti Haukka, Ebbe Nordlander
    [Show abstract] [Hide abstract]
    ABSTRACT: The binuclear title complex, [Zn2(C33H33N6O)(CH3COO2)(CH3OH)](ClO4)2, was synthesized by the reaction between 2,6-bis-({[bis-(pyridin-2-yl)meth-yl]amino}-meth-yl)-4-methyl-phenol (H-BPMP), Zn(OAc)2 and NaClO4. The two Zn(II) ions are bridged by the phenolate O atom of the octadentate ligand and the acetate group. An additional methanol ligand is terminally coordinated to one of the Zn(II) ions, rendering the whole structure unsymmetric. Other symmetric dizinc complexes of BPMP have been reported. However, to the best of our knowledge, the present structure, in which the two Zn(II) ions are distinguishable by the number of coordinating ligands and the coordination geometries (octahedral and square-pyramidal), is unique. The dizinc complex is a dication, and two perchlorate anions balance the charge. The -OH group of the coordinating methanol solvent mol-ecule forms a hydrogen bond with a perchlorate counter-anion. One of the anions is disordered over two sets of sites with an occupancy ratio of 0.734 (2):0.266 (2).
    Acta Crystallographica Section E Structure Reports Online 04/2014; 70(Pt 4):m120-1. · 0.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mixed-valence triiron complexes [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 0-2; edt = SCH2CH2S) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation to yield the moderately stable cations [Fe3(CO)5(PPh3)2(μ-edt)2](+) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2](+), species which also result upon oxidation by [Cp2Fe][PF6]. The electrochemistry of the formally Fe(I)-Fe(II)-Fe(I) complexes has been investigated. Each undergoes a quasi-reversible oxidation, the potential of which is sensitive to phosphine substitution, generally occurring between 0.15 and 0.50 V, although [Fe3(CO)5(PPh3)2(μ-edt)2] is oxidized at -0.05 V. Reduction of all complexes is irreversible and is again sensitive to phosphine substitution, varying between -1.47 V for [Fe3(CO)7(μ-edt)2] and around -1.7 V for phosphine-substituted complexes. In their one-electron-reduced states, all complexes are catalysts for the reduction of protons to hydrogen, the catalytic overpotential being increased upon successive phosphine substitution. In comparison to the diiron complex [Fe2(CO)6(μ-edt)], [Fe3(CO)7(μ-edt)2] catalyzes proton reduction at 0.36 V less negative potentials. Electronic structure calculations have been carried out in order to fully elucidate the nature of the oxidation and reduction processes. In all complexes, the HOMO comprises an iron-iron bonding orbital localized between the two iron atoms not ligated by the semibridging carbonyl, while the LUMO is highly delocalized in nature and is antibonding between both pairs of iron atoms but also contains an antibonding dithiolate interaction.
    Organometallics 03/2014; 33(6):1356-1366. · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The new clusters [Ru3(CO)9(μ-dppf){P(C4H3E)3}] (E = O, S) rearrange upon heating to give cyclometalated clusters [(μ-H)Ru3(CO)7(μ-dppf){μ3-(C4H3E)2P(C4H2E)}], behavior that is in marked contrast to the analogous dppm complexes in which both carbon-hydrogen and carbon-phosphorus bond activation yields furyne- and thiophyne-capped clusters. This difference in reactivity is probed by DFT calculations.
    Journal of Organometallic Chemistry 01/2014; 760:231–239. · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heterodinuclear mixed-valence complex [FeMn(ICIMP)(OAc)2Cl] (1) {H2ICIMP = 2-(N-carboxylmethyl)-[N-(N-methylimidazolyl-2-methyl)aminomethyl]-[6-(N-isopropylmethyl)-[N-(N-methylimidazolyl-2-methyl)]aminomethyl-4-methylphenol], an unsymmetrical N4O2 donor ligand} has been synthesized and fully characterized by several spectroscopic techniques as well as by X-ray crystallography. The crystal structure of the complex reveals that both metal centers in 1 are six-coordinate with the chloride ion occupying the sixth coordination site of the MnII ion. The phenoxide moiety of the ICIMP ligand and both acetate ligands bridge the two metal ions of the complex. Mössbauer spectroscopy shows that the iron ion in 1 is high-spin FeIII. Two quasi-reversible redox reactions for the complex, attributed to the FeIIIMnII/FeIIMnII (at –0.67 V versus Fc/Fc+) and FeIIIMnII/FeIIIMnIII (at 0.84 V), were observed by means of cyclic voltammetry. Complex 1, with an FeIII–MnII distance of 3.58 Å, may serve as a model for the mixed-valence oxidation state of purple acid phosphatase from sweet potato. The capability of the complex to effect organophosphate hydrolysis (phosphatase activity) has been investigated at different pH levels (5.5–11) by using bis(2,4-dinitrophenyl)phosphate (BDNPP) as the substrate. Density functional theory calculations indicate that the substrate coordinates to the MnII ion. In the transition state, a hydroxide ion that bridges the two metal ions becomes terminally coordinated to the FeIII ion and acts as a nucleophile, attacking the phosphorus center of BDNPP with the concomitant dissociation of the leaving group.
    Berichte der deutschen chemischen Gesellschaft 01/2014; · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new iron complex mediates stereospecific hydroxylation of alkyl C-H bonds with hydrogen peroxide, exhibiting excellent efficiency. Isotope labelling studies provide evidence that the relative reactivity of tautomerically related oxo-iron species responsible for the C-H hydroxylation reaction is dominated by steric factors.
    Chemical Communications 11/2013; · 6.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dinuclear complex [Zn2(DPCPMP)(pivalate)](ClO4), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin-2-yl)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate (BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; it reveals that the dinuclear zinc(II) complexes, [Zn2(DPCPMP)](2+) and [Zn2(DPCPMP)(OH)](+) predominate the solution above pH4. The relatively high pKa of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand=0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters ΔH(‡)=95.59kJmol(-1), ΔS(‡)=-44.82Jmol(-1)K(-1), and ΔG(‡)=108.00kJmol(-1). The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn2(DPCPMP)(μ-OH)](+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFT). Calculations show that the reaction goes through one concerted step (SN2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; leaving group dissociates simultaneously in an overall inner sphere type activation. Calculated free energy barrier is in good agreement with the experimentally determined activation parameters.
    Journal of inorganic biochemistry 08/2013; · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The title compound, C14H16N6O2, is a second monoclinic polymorph of 2-[1-(3,5-dimeth-yl)pyrazol-yl]-2-hy-droxy-imino-N'-[1-(2-pyrid-yl)ethyl-idene] acetohydrazide, with two crystallographically independent mol-ecules per asymmetric unit. The non-planar mol-ecules are chemically equal having similar geometric parameters. The previously reported polymorph [Plutenko et al. (2012 ▶). Acta Cryst. E68, o3281] was described in space group Cc (Z = 4). The oxime group and the O atom of the amide group are anti with respect to the C-C bond. In the crystal, mol-ecules are connected by N-H⋯N hydrogen bonds into zigzag chains extending along the b axis.
    Acta Crystallographica Section E Structure Reports Online 05/2013; 69(Pt 5):o765-6. · 0.35 Impact Factor
  • Source
    01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the title compound, CHNO, the dihedral angles formed by the mean plane of the acetohydrazide group [maximum deviation 0.0629 (12) Å] with the pyrazole and pyridine rings are 81.62 (6) and 38.38 (4)° respectively. In the crystal, mol-ecules are connected by N-H⋯O and O-H⋯N hydrogen bonds into supra-molecular chains extending parallel to the -axis direction.
    Acta Crystallographica Section E Structure Reports Online 12/2012; 68(Pt 12):o3381. · 0.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The new clusters [H(4) Ru(4) (CO)(10) (μ-1,2-P-P)], [H(4) Ru(4) (CO)(10) (1,1-P-P)] and [H(4) Ru(4) (CO)(11) (P-P)] (P-P=chiral diphosphine of the ferrocene-based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H(4) Ru(4) (CO)(10) (μ-1,2-P-P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal-metal bond of the ruthenium tetrahedron in the "conventional" manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H(4) Ru(4) (CO)(10) (1,1-Walphos)] clusters isomerise to the corresponding [H(4) Ru(4) (CO)(10) (μ-1,2-Walphos)] clusters, whereas the Josiphos-containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α-unsaturated carboxylic acids and the prochiral methyl ester (E)-methyl 2-methylbut-2-enoate. High conversion rates (>94 %) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos-containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99-100 %), product selectivities (99-100 % in most cases) and good enantioselectivities, reaching 90 % enantiomeric excess (ee) in certain cases, were observed for the Walphos-containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high-pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H(4) Ru(4) (CO)(10) (μ-1,2-P-P)] clusters (P-P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P-P)(carboxylato)(2) ] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species.
    Chemistry 08/2012; 18(39):12458-78. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cupric and cuprous complexes of bis(2-methylbenzimidazolyl)(2-methylthiophene)amine (L(1)), bis(2-methylbenzimidazolyl)benzylamine (L(2)), bis(2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (L(3)), bis(1-methyl-2-methylbenzimidazolyl)benzylamine (Me(2)L(2)), and bis(1-methyl-2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (Me(2)L(3)) have been spectroscopically, structurally, and electrochemically characterised. The thioether-containing ligands L(3) and Me(2)L(3) give rise to complexes with Cu-S bonds in solution and in the solid state, as evidenced by UV-vis spectroscopy and X-ray crystallography. The Cu(2+) complexes [L(1)CuCl(2)] (1), [L(2)CuCl(2)] (2) and [Me(2)L(3)CuCl]ClO(4) (3(Me,ClO4)) are monomeric in solution according to ESI mass spectrometry data, as well as in the solid state. Their Cu(+) analogues [L(1)Cu]ClO(4), [L(2)Cu]ClO(4), [L(3)Cu]ClO(4) (4-6), [BOC(2)L(1)Cu(NCCH(3))]ClO(4) (4(BOC)), [Me(2)L(2)Cu(NCCH(3))(2)]PF(6) (5(Me)) and [Me(2)L(3)Cu](2)(ClO(4))(2) (6(Me)) are also monomeric in acetonitrile solution, as confirmed crystallographically for 4(BOC) and 5(Me). In contrast, 6(Me) is dimeric in the solid state, with the thioether group of one of the ligands bound to a symmetry-related Cu(+) ion. Cyclic voltammetry studies revealed that the bis(2-methylbenzimidazolyl)amine-Cu(2+)/Cu(+) systems possess half-wave potentials in the range -0.16 to -0.08 V (referenced to the ferrocenium-ferrocene couple); these values are nearly 0.23 V less negative than those reported for related bis(picolyl)amine-derived ligands. Based on these observations, the N(3) or N(3)S donor set of the benzimidazole-derived ligands is analogous to previously reported chelating systems, but the electronic environment they provide is unique, and may have relevance to histidine and methionine-containing metalloenzymes. This is also reflected in the reactivity of [Me(2)L(2)Cu(NCCH(3))(2)](+) (5(Me)) and [Me(2)L(3)Cu](+) (6(Me)) towards dioxygen, which results in the production of the superoxide anion in both cases. The thioether-bound Cu(+) centre in 6(Me) appears to be more selective in the generation of O(2)˙(-) than 5(Me), lending evidence to the hypothesis of the modulating properties of thioether ligands in Cu-O(2) reactions.
    Dalton Transactions 06/2012; 41(31):9394-404. · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organometallic analogues of chloroquine show promise as new antimalarial agents capable of overcoming resistance to the parent drug chloroquine. Here, the synthesis and characterization of three new cymantrene (CpMn(CO)(3)) and cyrhetrene (CpRe(CO)(3)) 4-aminoquinoline conjugates with either an amine or amide linker are reported. The antimalarial activity of the new organometallic conjugates N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-cymantrenylbutanamide (3), N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-cyrhetrenylbutanamide (4) and N-(7-chloroquinolin-4-yl)-N'-(cymantrenylmethyl)ethane-1,2-diamine (6) was evaluated against a chloroquine-sensitive (CQS) and a chloroquine-resistant strain (CQR) of the malaria parasite Plasmodium falciparum. The cymantrene complex with an amine linker (6) showed good activity against the CQS strain but was inactive against the CQR strain. In contrast, cymantrene and cyrhetrene compounds with an amide linker were active against both the CQS and the CQR strain. In addition, the antibacterial, anti-trypanosomal and anti-leishmanial activity of the compounds was evaluated. Compound 6 showed submicromolar activity against Trypanosoma brucei at a concentration where the toxicity to normal human cells is low. No significant effect was noticed on the exchange of manganese for rhenium in the CpM(CO)(3) moiety in any of the biological assays.
    Dalton Transactions 03/2012; 41(21):6443-50. · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.
    Dalton Transactions 03/2012; 41(9):2764-73. · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first structural determination of a copper (II) complex containing the ligand [1-(4-((1H-benzo[d][1,2,3]triazol-2(3H)-yl)methyl)benzyl)-1H-benzo[d][1,2,3]triazole]-benzo[d][1,2,3]triazol-2(3H)-yl)methyl)benzyl)-1H-benzo[d][1,2,3]triazole] Complex X-ray a b s t r a c t The reaction of the ligand [1-(4-((1H-benzo[d][1,2,3]triazol-2(3H)-yl)methyl)benzyl)-1H-benzo[d][1,2,3] triazole] (L) with CuCl 2 in acetonitrile yields a dinuclear copper(II) complex [Cu 2 Cl 4 L 2 ]Á2CH 3 CN (1Á2CH 3 CN), which has been characterized by elemental analysis, powder and single crystal X-ray diffrac-tion, thermal gravimetric analysis as well as IR, UV–Vis and EPR spectroscopy The crystal structure reveals that the metal coordination geometry is best described as square planar.
    Inorganica Chimica Acta 01/2012; 383:327. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of tris[6-(2-hydroxymethyl)pyridylmethyl]amine, tpa(OH)(3), with (VOSO4)-O-IV center dot 5H(2)O resulted in an unexpected redox reaction producing [(VLH)-L-III][(VLH2)-L-III][PF6](3)center dot 1.5H(2)O (where H3L is bis(2-hydroxymethylpyridyl)(2-carboxypyridylmethyl)amine). This reaction is interesting in the light of the ability of ascidians to accumulate V-III by reduction of V-V from sea water. It also provides additional proof to the susceptibility of pyridylmethylamines to oxidation by certain metal ions. (C) 2012 Elsevier B. V. All rights reserved.
    Inorganica Chimica Acta. 01/2012; 392:490-493.
  • Source
    ” D.A. Hrovat, E. Nordlander, M.G. Richmond
    [Show abstract] [Hide abstract]
    ABSTRACT: The rearrangement of the phosphine-thioether ligand in 1,2-(Peq,Seq)-Os3(CO)10(Ph2PCH2CH2SMe) to 1,1-(Peq,Sax)-Os3(CO)10(Ph2PCH2CH2SMe) was investigated by electronic structure calculations. The chelated isomer lies 2.5 kcal/mol lower in energy than its bridged counterpart, and the barrier computed for the mechanism is in agreement with the results from our earlier experimental study. Phosphine-thioether isomerization occurs via three distinct steps that involve the migration of the CO and SMe groups in a plane that is perpendicular to the trimetallic core. One of the intermediates on the reaction surface corresponds to the 50e cluster Os3(CO)9(μ-CO)(μ-Ph2PCH2CH2SMe), whose edge-bridging thioether moiety functions as a 4e donor ligand. Alternative mechanisms involving ligand dissociation/association and merry-go-round sequences are energetically prohibitive.
    Organometallics 01/2012; 31:6608. · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the title compound, [Re(3)(μ-H)(3)(C(25)H(22)P(2))(CO)(10)]·CH(2)Cl(2), the three Re atoms form a triangle bearing ten terminal carbonyl groups and three edge-bridging hydrides. The bis-(diphenyl-phosphan-yl)methane ligand bridges two Re atoms. Neglecting the Re-Re inter-actions, each Re atom is in a slightly distorted octa-hedral coordination environment. The dichloro-methane solvent mol-ecule is disordered over two sets of sites with fixed occupancies of 0.6 and 0.4.
    Acta Crystallographica Section E Structure Reports Online 12/2011; 67(Pt 12):m1816. · 0.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reaction of N-(2-hydroxybenzyl)-N-(2-picolyl) glycine (H(2)papy) with VOSO(4) in water gives the oxidovanadium(V) oxido-bridged dimer [{(papy)(VO)}(2) μ-O)] (1). Similarly, reaction of N-(2-hydroxybenzyl) glycine (H(2)glysal) with VOSO(4) gives [(glysal)VO(H(2)O)] (2) and reaction of salicylamide (Hsalam) with VOSO(4) in methanol gives [(salam)(2)VO] (3). The crystal structure of the oxido-bridged complex 1 is reported. The insulin-mimetic activity of all three complexes was evaluated with respect to their ability to phosphorylate protein kinase B (PKB). The speciations of complexes 1 and 2 were studied over the pH range 2-10. Complex 1 shows greater stability over the whole pH range but only 2 and 3 exhibit an insulin-mimetic effect.
    Journal of inorganic biochemistry 09/2011; 105(12):1795-800. · 3.25 Impact Factor

Publication Stats

245 Citations
312.75 Total Impact Points

Institutions

  • 1996–2014
    • Lund University
      • • Department of Physical Chemistry
      • • Department of Organic Chemistry
      • • Department of Chemistry
      Lund, Skåne, Sweden
  • 2012–2013
    • National Taras Shevchenko University of Kyiv
      • Department of Inorganic Chemistry
      Kievo, Kyiv City, Ukraine
    • Universidad Nacional Autónoma de México
      • Institute of Chemistry
      Mexico City, The Federal District, Mexico
  • 2010
    • University of Colorado at Boulder
      • Department of Chemistry and Biochemistry
      Boulder, CO, United States
  • 2004–2010
    • University College London
      • Department of Chemistry
      London, ENG, United Kingdom
  • 2006–2008
    • Jahangirnagar University
      • Department of Chemistry
      Dhaka, Dhaka Division, Bangladesh
  • 1995–2008
    • University of Cambridge
      • Department of Chemistry
      Cambridge, England, United Kingdom
  • 2002
    • Russian Academy of Sciences
      • Institute of the Problems of Chemical Physics
      Moskva, Moscow, Russia