Lauren J Manderfield

University of Pennsylvania, Philadelphia, PA, United States

Are you Lauren J Manderfield?

Claim your profile

Publications (9)91.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.
    Circulation 07/2012; 126(9):1058-66. · 15.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. Determine whether Isl1 is expressed by cardiac neural crest. We used an intersectional fate-mapping system using the RC::FrePe allele, which reports dual Flpe and Cre recombination. Combining Isl1(Cre/+), a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, embryonic stem cultures, or induced pluripotent stem cultures may be of neural crest lineage.
    Circulation Research 03/2012; 110(7):922-6. · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling in vascular smooth muscle precursors is required for smooth muscle differentiation. Jagged1 expression on endothelium activates Notch in vascular smooth muscle precursors including those of neural crest origin to initiate the formation of a smooth muscle layer in a maturing blood vessel. Here, we show that Jagged1 is a direct Notch target in smooth muscle, resulting in a positive feedback loop and lateral induction that propagates a wave of smooth muscle differentiation during aortic arch artery development. In vivo, we show that Notch inhibition in cardiac neural crest impairs Jagged1 messenger RNA expression and results in deficient smooth muscle differentiation and resultant aortic arch artery defects. Ex vivo, Jagged1 ligand activates Notch in neural crest explants and results in activation of Jagged1 messenger RNA, a response that is blocked by Notch inhibition. We examine 15 evolutionary conserved regions within the Jagged1 genomic locus and identify a single Notch response element within the second intron. This element contains a functional Rbp-J binding site demonstrated by luciferase reporter and chromatin immunoprecipitation assays and is sufficient to recapitulate aortic arch artery expression of Jagged1 in transgenic mice. Loss of Jagged1 in neural crest impairs vascular smooth muscle differentiation and results in aortic arch artery defects. Taken together, these results provide a mechanism for lateral induction that allows for a multilayered smooth muscle wall to form around a nascent arterial endothelial tube and identify Jagged1 as a direct Notch target.
    Circulation 12/2011; 125(2):314-23. · 15.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ventricular preexcitation, which characterizes Wolff-Parkinson-White syndrome, is caused by the presence of accessory pathways that can rapidly conduct electrical impulses from atria to ventricles, without the intrinsic delay characteristic of the atrioventricular (AV) node. Preexcitation is associated with an increased risk of tachyarrhythmia, palpitations, syncope, and sudden death. Although the pathology and electrophysiology of preexcitation syndromes are well characterized, the developmental mechanisms are poorly understood, and few animal models that faithfully recapitulate the human disorder have been described. Here we show that activation of Notch signaling in the developing myocardium of mice can produce fully penetrant accessory pathways and ventricular preexcitation. Conversely, inhibition of Notch signaling in the developing myocardium resulted in a hypoplastic AV node, with specific loss of slow-conducting cells expressing connexin-30.2 (Cx30.2) and a resulting loss of physiologic AV conduction delay. Taken together, our results suggest that Notch regulates the functional maturation of AV canal embryonic myocardium during the development of the specialized conduction system. Our results also show that ventricular preexcitation can arise from inappropriate patterning of the AV canal-derived myocardium.
    The Journal of clinical investigation 02/2011; 121(2):525-33. · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital anomalies of the aortic valve are common and are associated with progressive valvular insufficiency and/or stenosis. In addition, aneurysm, coarctation, and dissection of the ascending aorta and aortic arch are often associated conditions that complicate patient management and increase morbidity and mortality. These associated aortopathies are commonly attributed to turbulent hemodynamic flow through the malformed valve leading to focal defects in the vessel wall. However, numerous surgical and pathological studies have identified widespread cystic medial necrosis and smooth muscle apoptosis throughout the aortic arch in affected patients. Here, we provide experimental evidence for an alternative model to explain the association of aortic vessel and valvular disease. Using mice with primary and secondary cardiac neural crest deficiencies, we have shown that neural crest contribution to the outflow endocardial cushions (the precursors of the semilunar valves) is required for late gestation valvular remodeling, mesenchymal apoptosis, and proper valve architecture. Neural crest was also shown to contribute to the smooth muscle layer of the wall of the ascending aorta and aortic arch. Hence, defects of cardiac neural crest can result in functionally abnormal semilunar valves and concomitant aortic arch artery abnormalities.
    The Journal of clinical investigation 01/2011; 121(1):422-30. · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modulation of voltage-gated potassium (KV) channels by the KCNE family of single transmembrane proteins has physiological and pathophysiological importance. All five KCNE proteins (KCNE1-KCNE5) have been demonstrated to modulate heterologously expressed KCNQ1 (KV7.1) with diverse effects, making this channel a valuable experimental platform for elucidating structure-function relationships and mechanistic differences among members of this intriguing group of accessory subunits. Here, we specifically investigated the determinants of KCNQ1 inhibition by KCNE4, the least well-studied KCNE protein. In CHO-K1 cells, KCNQ1, but not KCNQ4, is strongly inhibited by coexpression with KCNE4. By studying KCNQ1-KCNQ4 chimeras, we identified two adjacent residues (K326 and T327) within the extracellular end of the KCNQ1 S6 segment that determine inhibition of KCNQ1 by KCNE4. This dipeptide motif is distinct from neighboring S6 sequences that enable modulation by KCNE1 and KCNE3. Conversely, S6 mutations (S338C and F340C) that alter KCNE1 and KCNE3 effects on KCNQ1 do not abrogate KCNE4 inhibition. Further, KCNQ1-KCNQ4 chimeras that exhibited resistance to the inhibitory effects of KCNE4 still interact biochemically with this protein, implying that accessory subunit binding alone is not sufficient for channel modulation. These observations indicate that the diverse functional effects observed for KCNE proteins depend, in part, on structures intrinsic to the pore-forming subunit, and that distinct S6 subdomains determine KCNQ1 responses to KCNE1, KCNE3, and KCNE4.
    The Journal of General Physiology 09/2009; 134(3):207-17. · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (Kv) channels are modulated in distinct ways by members of the KCNE family of single transmembrane domain accessory subunits. KCNE4 has a dramatic inhibitory effect on KCNQ1 that differs substantially from the activating effects of KCNE1 and KCNE3. The structural features of KCNE4 that enable this behaviour are unknown. We exploited chimeras of KCNE1, KCNE3 and KCNE4 to identify specific domains responsible for the inhibitory effects on heterologously expressed KCNQ1. Previous structure-function analysis of KCNE1 and KCNE3 identified a critical tripeptide motif within the transmembrane domain that accounts for the differences in KCNQ1 modulation evoked by these two KCNE proteins. Swapping the transmembrane tripeptide motif of KCNE4 with the corresponding amino acid sequence of KCNE1 did not influence the behaviour of either protein. Similarly, exchanging the tripeptide regions of KCNE3 and KCNE4 further demonstrated that this transmembrane motif does not explain the activity of KCNE4. Using a more systematic approach, we demonstrated that the KCNE4 C-terminus was critical for KCNQ1 modulation. Replacement of the KCNE1 or KCNE3 C-termini with that of KCNE4 created chimeric proteins that strongly inhibited KCNQ1. Additional evidence supported a cooperative role of the KCNE4 transmembrane domain. Although the C-terminus was necessary for KCNE4 activity, we demonstrated that a surrogate transmembrane domain derived from the cytokine receptor CD8 did not enable inhibition of KCNQ1, indicating that the KCNE4 C-terminus alone was not sufficient for KCNQ1 modulation. We further demonstrated that the KCNE4 C-terminus interacts with KCNQ1. Our data reveal important structure-function relationships for KCNE4 that help advance our understanding of potassium channel modulation by KCNE proteins.
    The Journal of Physiology 12/2008; 587(Pt 2):303-14. · 4.38 Impact Factor
  • Source
    Lauren J Manderfield, Alfred L George
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.
    FEBS Journal 04/2008; 275(6):1336-49. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (K(V)) channels are modulated by at least three distinct classes of proteins including the KCNE family of single transmembrane accessory subunits. In the human genome, KCNE proteins are encoded by five genes designated KCNE1 through KCNE5. KCNE1 associates with KCNQ1 in vitro to generate a potassium current closely resembling the slowly activating delayed rectifier (I(Ks)). Other KCNE proteins also affect the activity of heterologously expressed KCNQ1. To investigate the potential physiological relevance of this gene family in human heart, we examined the relative expression of KCNQ1 and all five KCNE genes in samples derived from normal tissues representing major regions of human heart by real-time, quantitative RT-PCR. KCNE genes are expressed in human heart with a relative abundance ranking of KCNE1 > KCNE4 > KCNE5 approximately KCNE3 > KCNE2. In situ hybridization revealed prominent expression of KCNE1 and KCNE3-5 in human atrial myocytes. In cardiomyopathic hearts, expression of KCNE1, KCNE3, KCNE4, and KCNQ1 was significantly increased, while KCNE2 and KCNE5 exhibited reduced expression. In a cell line stably expressing KCNQ1 and KCNE1, transient expression of KCNE3, KCNE4, or KCNE5 significantly altered I(Ks) current profiles. Even in the presence of additional KCNE1, KCNE4 and KCNE5 exert dominant effects on I(Ks). Although KCNE1 is the predominant KCNE family member expressed in human heart, the abundance of other KCNE transcripts including potential KCNQ1 suppressors (KCNE4 and KCNE5) and their altered expression patterns in disease lead us to speculate that a balance of KCNE accessory subunits may be important for cardiac K(V) channel function.
    Journal of Molecular and Cellular Cardiology 02/2005; 38(2):277-87. · 5.15 Impact Factor

Publication Stats

198 Citations
91.55 Total Impact Points


  • 2011–2012
    • University of Pennsylvania
      • Department of Cell and Developmental Biology
      Philadelphia, PA, United States
    • Boston Children's Hospital
      Boston, Massachusetts, United States
    • Hospital of the University of Pennsylvania
      • Department of Cell and Development Biology
      Philadelphia, Pennsylvania, United States
  • 2005–2009
    • Vanderbilt University
      • • Department of Medicine
      • • Department of Pharmacology
      Nashville, MI, United States