Judith C T van Deutekom

Leiden University Medical Centre, Leiden, South Holland, Netherlands

Are you Judith C T van Deutekom?

Claim your profile

Publications (76)317.76 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antisense 2'-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours-24 weeks). Oligonucleotide half-life was longer in heart (~65 days) compared with that in skeletal muscle, liver, and kidney (~35 days). Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days). Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3-8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2'-O-methyl phosphorothioate oligos used for the treatment of DMD.Molecular Therapy-Nucleic Acids (2014) 3, e148; doi:10.1038/mtna.2014.1; published online 18 February 2014.
    Molecular therapy. Nucleic acids. 01/2014; 3:e148.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy that is currently being tested in various clinical trials. This approach is based on restoring the open reading frame of dystrophin transcripts resulting in shorter but partially functional dystrophin proteins as found in patients with Becker muscular dystrophy. After systemic administration, a large proportion of AONs ends up in the liver and kidneys. Therefore, enhancing AON uptake by skeletal and cardiac muscle would improve the AONs' therapeutic effect. For phosphorodiamidate morpholino oligomer, AONs use nonspecific positively charged cell penetrating peptides to enhance efficacy. However, this is challenging for negatively charged 2'-O-methyl phosphorothioate oligomer. Therefore, we screened a 7-mer phage display peptide library to identify muscle and heart homing peptides in vivo in the mdx mouse model and found a promising candidate peptide capable of binding muscle cells in vitro and in vivo. Upon systemic administration in dystrophic mdx mice, conjugation of a 2'-O-methyl phosphorothioate AON to this peptide indeed improved uptake in skeletal and cardiac muscle, and resulted in higher exon skipping levels with a significant difference in heart and diaphragm. Based on these results, peptide conjugation represents an interesting strategy to enhance the therapeutic effect of exon skipping with 2'-O-methyl phosphorothioate AONs for Duchenne muscular dystrophy.
    Nucleic acid therapeutics. 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Becker muscular dystrophy (BMD) is characterised by broad clinical variability. Ongoing studies exploring dystrophin restoration in Duchenne muscular dystrophy ask for better understanding of the relation between dystrophin levels and disease severity. We studied this relation in BMD patients with varying mutations, including a large subset with an exon 45-47 deletion. Dystrophin was quantified by western blot analyses in a fresh muscle biopsy of the anterior tibial muscle. Disease severity was assessed using quantitative muscle strength measurements and functional disability scoring. MRI of the leg was performed in a subgroup to detect fatty infiltration. 33 BMD patients participated. No linear relation was found between dystrophin levels (range 3%-78%) and muscle strength or age at different disease milestones, in both the whole group and the subgroup of exon 45-47 deleted patients. However, patients with less than 10% dystrophin all showed a severe disease course. No relation was found between disease severity and age when analysing the whole group. By contrast, in the exon 45-47 deleted subgroup, muscle strength and levels of fatty infiltration were significantly correlated with patients' age. Our study shows that dystrophin levels appear not to be a major determinant of disease severity in BMD, as long as it is above approximately 10%. A significant relation between age and disease course was only found in the exon 45-47 deletion subgroup. This suggests that at higher dystrophin levels, the disease course depends more on the mutation site than on the amount of the dystrophin protein produced.
    Journal of neurology, neurosurgery, and psychiatry 11/2013; · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy. It aims to restore the dystrophin open reading frame by skipping exons with antisense oligonucleotides (AONs) to allow production of partly functional proteins. The approach is currently tested in phase 3 clinical trials, but dosing and maintenance regimens have not yet been well studied. This study compared pharmacokinetic and pharmacodynamic effects of different 2'-O-methyl phosphorothioate RNA AON dosing and maintenance regimens in the preclinical mdx mouse model. When comparing different dosing regimens over a period of 8 weeks, higher levels of AON, exon skipping, and protein were observed in muscle after low daily doses compared with large weekly doses. Secondly, after receiving a high loading dose (1,250 mg/kg) in the first week, mice treated with maintenance injections twice weekly for 8 weeks showed higher preservation of therapeutic effects than mice receiving less or no maintenance injections. In both cases, the regimen resulting in the highest AON and exon skipping levels in muscle also resulted in high AON levels in liver and kidneys. These studies underline the importance of balancing optimal AON efficacy and tolerable levels in non-target organs, which may be fine-tuned by further optimization of AON treatment regimens.
    Nucleic acid therapeutics. 05/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytokine interleukin 1(IL-1) initiates a wide range of proinflammatory cascades and its inhibition has been shown to decrease inflammation in a variety of diseases. IL-1 receptor accessory protein (IL-1RAcP) is an indispensible part of the IL-1R complex that stabilizes IL-1/IL-1R interaction and plays an important role in the signal transduction of the receptor complex. The soluble form of IL-1RAcP (sIL-1RAcP) contains only the extracellular domain and serves as a natural inhibitor of IL-1 signaling. Therefore, increasing sIL-1RAcP levels might be an attractive therapeutic strategy to inhibit IL-1-driven inflammation. To achieve this we designed specific antisense oligonucleotides (AON), to redirect pre-mRNA IL-1RAcP splicing by skipping of the transmembrane domain encoding exon 9. This would give rise to a novel Δ9IL-1RAcP mRNA encoding a soluble, secreted form of IL-1RAcP, which might have similar activity as natural sIL-1RAcP. AON treatment resulted in exon 9 skipping both in vitro and in vivo. A single dose injection of 10 mg AON/kg body weight induced 90% skipping in mouse liver during at least 5 days. The truncated mRNA encoded for a secreted, soluble Δ9IL-1RAcP protein. IL-1RAcP skipping resulted in a substantial inhibition of IL-1 signaling in vitro. These results indicate that skipping of the transmembrane encoding exon 9 of IL-1RAcP using specific AONs might be a promising therapeutic strategy in a variety of chronic inflammatory diseases.Molecular Therapy - Nucleic Acids (2013) 2, e66; doi:10.1038/mtna.2012.58; published online 22 January 2013.
    Molecular therapy. Nucleic acids. 01/2013; 2:e66.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubule-destabilizing agents, such as vinca alkaloids (VAs), are part of the treatment currently applied in patients with high-risk neuroblastoma (NB). However, the development of drug resistance and toxicity make NB difficult to treat with these drugs. In this study we explore the combination of VAs (vincristine or vinblastine) with knockdown of the microtubule-associated proteins encoded by the doublecortin-like kinase (DCLK) gene by using short interference RNA (siRNA). We examined the effect of VAs and DCLK knockdown on the microtubule network by immunohistochemistry. We performed dose-response studies on cell viability and proliferation. By combining VA with DCLK knockdown we observed a strong reduction in the EC(50) to induce cell death: up to 7.3-fold reduction of vincristine and 21.1-fold reduction of vinblastine. Using time-lapse imaging of phosphatidylserine translocation and a terminal deoxynucleotidyl transferase dUTP nick-end labeling-based assay, we found a significant increase of apoptosis by the combined treatment. Induction of caspase-3 activity, as detected via cleavage of N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, showed a 3.3- to 12.0-fold increase in the combined treatment. We detected significant increases in caspase-8 activity as well. Moreover, the multidrug dose effect calculated by using the median effect method showed a strong synergistic inhibition of proliferation and induction of apoptosis at most of the combined concentrations of siRNAs and VAs. Together, our data demonstrate that the silencing of DCLK sensitizes NB cells to VAs, resulting in a synergetic apoptotic effect.
    Journal of Pharmacology and Experimental Therapeutics 04/2012; 342(1):119-30. · 3.89 Impact Factor
  • Annals of the rheumatic diseases 04/2012; 71 Suppl 2:i75-7. · 8.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs.
    Human gene therapy 01/2012; 23(3):262-73. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD) is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynamic profile of antisense oligonucleotides (AONs). Here, we tested the safety and efficacy of subcutaneously administered 2'-O-methyl phosphorothioate AON at 200 mg/kg/week for up to 6 months in mouse models with varying levels of disease severity: mdx mice (mild phenotype) and mdx mice with one utrophin allele (mdx/utrn(+/-); more severe phenotype). Long-term treatment was well tolerated and exon skipping and dystrophin restoration confirmed for all animals. Notably, in the more severely affected mdx/utrn(+/-) mice the therapeutic effect was larger: creatine kinase (CK) levels were more decreased and rotarod running time was more increased. This suggests that the mdx/utrn(+/-) model may be a more suitable model to test potential therapies than the regular mdx mouse. Our results also indicate that long-term subcutaneous treatment in dystrophic mouse models with these AONs is safe and beneficial.Molecular Therapy-Nucleic Acids (2012) 1, e44; doi:10.1038/mtna.2012.38; published online 4 September 2012.
    Molecular therapy. Nucleic acids. 01/2012; 1:e44.
  • Neuromuscular Disorders - NEUROMUSCULAR DISORD. 01/2011; 21(9):709-709.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2'-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)(7), also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well.
    PLoS ONE 01/2011; 6(9):e24308. · 3.53 Impact Factor
  • Neuromuscular Disorders - NEUROMUSCULAR DISORD. 01/2011; 21(9):703-703.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antisense oligonucleotides (AONs) are being developed as RNA therapeutic molecules for Duchenne muscular dystrophy. For oligonucleotides with the 2'-O-methyl-phosphorothioate (2OMePS) RNA chemistry, proof of concept has been obtained in patient-specific muscle cell cultures, the mouse and dog disease models, and recently by local administration in Duchenne patients. To further explore the pharmacokinetic (PK)/pharmacodynamic (PD) properties of this chemical class of oligonucleotides, we performed a series of preclinical studies in mice. The results demonstrate that the levels of oligonucleotides in dystrophin-deficient muscle fibers are much higher than in healthy fibers, leading to higher exon-skipping levels. Oligonucleotide levels and half-life differed for specific muscle groups, with heart muscle showing the lowest levels but longest half-life (approximately 46 days). Intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) delivery methods were directly compared. For each method, exon-skipping and novel dystrophin expression were observed in all muscles, including arrector pili smooth muscle in skin biopsies. After i.v. administration, the oligonucleotide peak levels in plasma, liver, and kidney were higher than after s.c. or i.p. injections. However, as the bioavailability was similar, and the levels of oligonucleotide, exon-skipping, and dystrophin steadily accumulated overtime after s.c. administration, we selected this patient-convenient delivery method for future clinical study protocols.
    Molecular Therapy 06/2010; 18(6):1210-7. · 7.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-mediated exon skipping is currently the most promising therapeutic approach for Duchenne muscular dystrophy (DMD). The rationale is to use antisense oligonucleotides (AONs) to hide exons from the splicing machinery, causing them to be skipped from the mature mRNA. Thus, the mutated, out-of-frame dystrophin transcripts as seen in DMD are reframed, allowing the generation of internally deleted, partly functional dystrophin proteins, rather than prematurely truncated, nonfunctional ones. This approach is mutation specific, so multiple AONs targeting all internal DMD exons have been designed and tested. Here, we have retrospectively compared our own set of 156 exon-internal AONs and 256 AONs as present in patents and publications from Dr. Wilton (Australia), which includes exon-internal as well as splice site-targeting AONs. Effective AONs are significantly more often exon-internal and, as anticipated, have better thermodynamic properties. Comparison of splice site and exon-internal AONs revealed that exon-internal AONs are more efficient and target more predicted exonic splicing enhancer and less predicted exon splicing silencer sites, but also have better thermodynamic properties. This suggests that exons may be better AON targets than introns per se, because of their higher GC content, which generally will result in improved AON binding.
    Oligonucleotides 04/2010; 20(2):69-77. · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frame shifting and nonsense mutations in the dystrophin gene. Through skipping of an (additional) exon from the pre-mRNA, the reading frame can be restored. This can be achieved with antisense oligonucleotides (AONs), which induce exon skipping by binding to splice sites or splice enhancer sites. The resulting protein will be shorter but at least partially functional. So far, exon skipping has been very successful in cell cultures, in mouse and dog models, and even in a first exploratory study in patients. Current research mainly focuses on optimization of systemic AON delivery. Here we give an overview of the available mouse models. To obtain the most informative results for future clinical application, research may have to move from the currently preferred mdx mouse to mouse models more comparable to patients, such as the utrophin/dystrophin-negative mouse and the hDMD mouse models. Further, we briefly discuss two AON backbone chemistries that are currently in clinical trials for DMD exon skipping. We propose that different chemistries should be further developed in parallel in order to hasten the transfer of the exon skipping therapy to the clinic.
    Annals of the New York Academy of Sciences 09/2009; 1175:71-9. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with Mendelian susceptibility to mycobacterial disease have severe, recurrent life-threatening infections with otherwise poorly pathogenic mycobacteria and salmonellae. The extreme susceptibility is the result of genetic defects in the interleukin-12/interferon-gamma (IL-12/IFN-gamma) pathway. The infections are difficult to treat, and therapeutic options are limited. We explored the feasibility of antisense-mediated exon skipping as therapy for Mendelian susceptibility to mycobacterial disease with cells from a complete IL-12Rbeta1(-/-) patient. Expression constructs were first studied to determine whether IL12RB1 lacking exon 2 encodes a functional protein. The IL-12Rbeta1 expression construct lacking exon 2 was expressed on T cells. On IL-12 or IL-23 stimulation, this construct phosphorylated similar amounts of STAT1, STAT3, and STAT4 and induced similar amounts of IFN-gamma compared with a normal IL-12Rbeta1 construct. Antisense oligonucleotides (AONs) directed at exon 2 resulted in transcripts lacking exon 2 in both controls' and patients' T cells. In IL-12Rbeta1(-/-) cells, skipping of exon 2 led to expression of IL-12Rbeta1 on the cell surface and responsiveness to IL-12. We showed that IL12RB1 lacking exon 2 encodes a functional IL-12Rbeta1. We demonstrated that T cells can be highly efficiently transduced with AONs and are amenable to antisense-mediated exon skipping. Furthermore, we showed that exon skipping (partly) corrects the IL-12Rbeta1 deficiency in patients' cells.
    Blood 04/2009; 113(19):4548-55. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-mediated exon skipping aiming for reading frame restoration is currently a promising therapeutic application for Duchenne muscular dystrophy (DMD). This approach is mutation specific, but as the majority of DMD patients have deletions that cluster in hotspot regions, the skipping of a small number of exons is applicable to relatively large numbers of patients. To assess the actual applicability of the exon skipping approach, we here determined for deletions, duplications and point mutations reported in the Leiden DMD mutation database, which exon(s) should be skipped to restore the open reading frame. In theory, single and double exon skipping would be applicable to 79% of deletions, 91% of small mutations, and 73% of duplications, amounting to 83% of all DMD mutations. Exon 51 skipping, which is being tested in clinical trials, would be applicable to the largest group (13%) of all DMD patients. Further research is needed to determine the functionality of different in-frame dystrophins and a number of hurdles has to be overcome before this approach can be applied clinically.
    Human Mutation 02/2009; 30(3):293-9. · 5.21 Impact Factor
  • Neuromuscular Disorders - NEUROMUSCULAR DISORD. 01/2009; 19(8):577-577.
  • Neuromuscular Disorders - NEUROMUSCULAR DISORD. 01/2009; 19(8):659-660.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antisense-mediated exon skipping is a putative treatment for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs), the disrupted DMD reading frame is restored, allowing generation of partially functional dystrophin and conversion of a severe Duchenne into a milder Becker muscular dystrophy phenotype. In vivo studies are mainly performed using 2'-O-methyl phosphorothioate (2OMePS) or morpholino (PMO) AONs. These compounds were never directly compared. mdx and humanized (h)DMD mice were injected intramuscularly and intravenously with short versus long 2OMePS and PMO for mouse exon 23 and human exons 44, 45, 46 and 51. Intramuscular injection showed that increasing the length of 2OMePS AONs enhanced skipping efficiencies of human exon 45, but decreased efficiency for mouse exon 23. Although PMO induced more mouse exon 23 skipping, PMO and 2OMePS were more comparable for human exons. After intravenous administration, exon skipping and novel protein was shown in the heart with both chemistries. Furthermore, PMO showed lower intramuscular concentrations with higher exon 23 skipping levels compared to 2OMePS, which may be due to sequestration in the extracellular matrix. Finally, two mismatches rendered 2OMePS but not PMO AONs nearly ineffective. The results obtained in the present study indicate that increasing AON length improves skipping efficiency in some but not all cases. It is feasible to induce exon skipping and dystrophin restoration in the heart after injection of 2OMePS and unconjugated PMO. Furthermore, differences in efficiency between PMO and 2OMePS appear to be sequence and not chemistry dependent. Finally, the results indicate that PMOs may be less sequence specific than 2OMePS.
    The Journal of Gene Medicine 01/2009; 11(3):257-66. · 2.16 Impact Factor

Publication Stats

3k Citations
317.76 Total Impact Points

Institutions

  • 1998–2012
    • Leiden University Medical Centre
      • Department of Human Genetics
      Leiden, South Holland, Netherlands
    • University of Pittsburgh
      • Department of Orthopaedic Surgery
      Pittsburgh, PA, United States
  • 1993–2009
    • Leiden University
      Leyden, South Holland, Netherlands
  • 2007
    • Prosensa
      Leyden, South Holland, Netherlands
  • 2000
    • Roswell Park Cancer Institute
      • Department of Cancer Genetics
      Buffalo, NY, United States
  • 1998–1999
    • Childrens Hospital of Pittsburgh
      Pittsburgh, Pennsylvania, United States