Z Lohinai

Semmelweis University, Budapeŝto, Budapest, Hungary

Are you Z Lohinai?

Claim your profile

Publications (32)76.89 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Objective: Increasing evidence indicates that different neuropeptide-containing nerve elements are involved in the immune system and influence the inflammation of the gastrointestinal tract. The aim of this study was to investigate the morphological localization and distribution of the different immunoreactive (IR) nerve fibers and immunocompetent cells in the oral mucosa (e.g. tongue, gingiva) and compare the results with data received from streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The different nerve elements and immunocytes were detected by ABC immunohistochemistry. Results: The IR nerve fibers were found in the tunica propria of oral mucosa with different densities. These IR nerve fibers were mainly located beneath the epithelial lining, around the blood vessels and glands, and some of them were also located in the taste buds. After 2 weeks of STZ treatment the total number of IR nerve fibers, especially the SP and neuropeptide Y (NPY) IR ones, was significantly increased (p < 0.05), as was also the number of immunocytes (lymphocytes, plasma cells, mast cells). Some of these cells also showed immunoreactivity for substance P (SP) and NPY. In several cases the SP IR nerve fibers were found in close proximity to the immunocytes. Electron microscopic investigation also revealed the close association between the IR nerve fibers and immunocompetent cells where the gap was 1 µm or even less. Conclusions: The close anatomical associations suggest communication between nerve fibers and immune cells which can be crucial for maintaining mucosal homeostasis and for ensuring an appropriate response to injury. © 2014 S. Karger AG, Basel.
    NeuroImmunoModulation 02/2014; 21(4):213-220. · 1.84 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This study examines the antibacterial properties of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX), Listerine®, and high purity chlorine dioxide (Solumium, ClO2) on selected common oral pathogen microorganisms and on dental biofilm in vitro. Antimicrobial activity of oral antiseptics was compared to the gold standard phenol. We investigated Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Veillonella alcalescens, Eikenella corrodens, Actinobacillus actinomycetemcomitans and Candida albicans as some important representatives of the oral pathogens. Furthermore, we collected dental plaque from the upper first molars of healthy young students. Massive biofilm was formed in vitro and its reduction was measured after treating it with mouthrinses: CHX, Listerine® or hyper pure ClO2. Their biofilm disrupting effect was measured after dissolving the crystal violet stain from biofilm by photometer. The results have showed that hyper pure ClO2 solution is more effective than other currently used disinfectants in case of aerobic bacteria and Candida yeast. In case of anaerobes its efficiency is similar to CHX solution. The biofilm dissolving effect of hyper pure ClO2 is significantly stronger compared to CHX and Listerine® after 5 min treatment. In conclusion, hyper pure ClO2 has a potent disinfectant efficacy on oral pathogenic microorganisms and a powerful biofilm dissolving effect compared to the current antiseptics, therefore high purity ClO2 may be a new promising preventive and therapeutic adjuvant in home oral care and in dental or oral surgery practice.
    Acta Microbiologica et Immunologica Hungarica 09/2013; 60(3):359-73. · 0.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: VEGF induces proliferation of endothelial cells, stimulates angiogenesis, and increases vascular permeability in many organs. Nevertheless, we have only limited information about its role on gingival hemodynamics, especially in venules. Therefor the aim of this study was to assess the acute circulatory effects of VEGF on rat gingival venules by means of the following protocol. Wister rats (n=63) were devided into five study groups after anesthesia; each animal received 10 microl of experimental solution dripped onto the lower interincisal gingiva. The groups included: 1) saline control (after the experiment, gingiva was excised for VEGF receptor 2 [VEGFR2] immunohistochemistry); 2) VEGF (0.1, 1, 10, or 50 microg/ml); 3) VEGF2 receptor antagonist 5-((7-benzyloxyquinazolin-4-yl)amino)-4-fluoro-2-methyl-phenol-hydrochloride (ZM323881; 20 microg/ml); 4) ZM323881 (20 microg/ml) followed by VEGF application (50 microg/ml after 15 minutes); and 5) VEGF (10 microg/ml), these rats were premedicated with nitric oxide (NO) synthase blocker (NG-nitro-L-arginine-methyl-ester [L-NAME]; 1 mg/ml in drinking water) for 1 week before the experiment. Changes in gingival superficial venule diameter were measured by vital microscopy prior to and 1, 5, 15, 30, and 60 minutes after the administration of the experimental solutions. According to our findings, VEGF dose-dependently increased the venular diameter compared to saline. ZM323881 alone did not cause any alteration. Premedication with ZM323881 or L-NAME decreased the dilatory effects of VEGF. Occassionally moderate VEGFR2 immunohistochemical labeling was observed in the wall components of the venules. Concluding our results we can say, that there is no remarkable VEGF production under physiologic circumstances in rat gingiva, but VEGF is able to increase gingival blood flow through the activation of VEGF2 receptors and consequent NO release.
    Fogorvosi szemle 06/2013; 106(2):53-9.
  • [show abstract] [hide abstract]
    ABSTRACT: We investigated the effectiveness of chlorine dioxide (ClO2) solution in comparison to sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX) in the elimination of intracanal Enterococcus faecalis biofilm. Extracted human teeth were inoculated with E. faecalis. After preparation the canals were irrigated with ClO2, NaOCl, CHX or physiologic saline for control. Two and five days later bacterial samples were collected and streaked onto Columbia agar. CFU/mL were counted. The canal walls were investigated by scanning electron microscopy (SEM). The gas phase was investigated in an upside down Petri dish where E. faecalis was inoculated onto blood agar. The irrigants were placed on absorbent paper into the cover. Bacteria were detectable in the control group, but not in any of the irrigants groups. There was a massive reinfection 2 or 5 days after irrigation in the control group. The lowest reinfection was found after the ClO2 treatment. These findings were confirmed by SEM images. We observed an antibacterial effect of ClO2 and NaOCl gas phases on E. faecalis growth, but not of CHX. ClO2 eliminates intracanal biofilm and keeps canal nearly free from bacteria. We suggest the use of high purity ClO2 as a root canal irrigant in clinical practice.
    Acta Microbiologica et Immunologica Hungarica 03/2013; 60(1):63-75. · 0.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: OBJECTIVE: The aim of the present study was to investigate the possible microvascular regulatory role of vascular endothelial growth factor receptor type 2 (VEGFR2) in experimental gingivitis in rats. BACKGROUND: Our previous results demonstrated that functionally active VEGFR2s are located in the venules of rat gingiva. While there is no remarkable endogenous gingival VEGF production under normal circumstances, exogenous VEGF, via VEGFR2, shows venodilatory effects. We assumed that VEGF plays an important role in vasoregulatory processes (vasodilation, increased permeability, angiogenesis) of gingival inflammation. METHODS: Gingivitis was induced by placing ligatures and composite material around and between the lower incisors of anesthetized Wistar rats next to the gingival margin. Seven days later, VEGFR2 antagonist (ZM323881), was dripped upon the labial gingiva next to the lower incisors. Diameter changes of the selected gingival venules were measured by vital microscopy. Animals with healthy gingiva served as controls. Venule diameter changes were compared to the baseline and to control groups (no ligature). Immunohistochemical and Western blot analysis for VEGFR2 were utilized. RESULTS: After 15, 30 and 60 min of local application of ZM323881, there was a significant venoconstriction in the inflamed gingiva compared to the baseline, while no change was recorded in controls. Endothelium, smooth muscle cells and pericytes of the gingivitis group showed increased VEGFR2 expression. CONCLUSION: Our findings suggest that there is an increased VEGF production in gingivitis, which may play an important role in vasodilation of rat gingival venules.
    Journal of Periodontal Research 09/2012; · 1.99 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study are to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR) and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for 1 week. METHODS: Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm, and saliva before OHR and in dental biofilm after OHR. RESULTS: Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After 1 week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine after OHR, unless biofilm lysine exceeded the minimal blood plasma content, in which case PI was further increased but GCF exudation was reduced. CONCLUSIONS: After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis.
    Journal of Periodontology 08/2012; 83(8):1048-1056. · 2.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The pentadecapeptide BPC 157 has been shown to have anti-inflammatory and wound healing effects on multiple target tissues and organs. The purpose of the present study was to investigate the effect of BPC 157 on inflammation and bone resorption in experimental periodontitis in rats. First the acute effect of BPC was tested on gingival blood flow by laser doppler flowmetry. Then periodontitis was produced by a silk ligature placed around the lower left first molar. Rats were treated with BPC 157 (once daily for 12 days) or vehicle. At day 13, the gingivomucosal tissues encircling the molars were removed on both sides. Inflammation was assessed by Evans blue plasma extravasation technique and by histology. Alveolar bone loss was analyzed by microCT. BPC 157 had no effect on gingivomucosal blood flow. Twelve day ligature caused a significantly increased Evans blue extravasation in the gingivomucosal tissue, histological signs of inflammation, and alveolar bone destruction. BPC 157 treatment significantly reduced both plasma extravasation, histological alterations and alveolar bone resorption. In conclusion, systemic application of BPC 157 does not alter blood circulation in healthy gingiva. Chronic application of the peptide has potent antiinflammatory effects on periodontal tissues in ligature induced periodontitis in rats. Taken together, this proof of concept study suggests that BPC 157 may represent a new peptide candidate in the treatment of periodontal disease.
    Journal of physiology and pharmacology: an official journal of the Polish Physiological Society 12/2009; 60 Suppl 7:115-22. · 2.48 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Endothelial cell proliferation, angiogenesis, and increased vascular permeability are among the effects of vascular endothelial growth factor (VEGF) in various organs. However, the effects of VEGF on gingival hemodynamics, especially on venules, have not been thoroughly investigated. This study investigated the acute circulatory effects of VEGF on rat gingival venules. Fifty-six anesthetized rats were divided into five study groups; each rat received 10 microl of experimental solution dripped onto the lower interincisal gingiva. The groups included: 1) saline control (after the experiment, gingiva was excised for VEGF receptor 2 [VEGFR2] immunohistochemistry); 2) VEGF (0.1, 1, 10, or 50 microg/ml); 3) VEGF2 receptor antagonist 5-((7-benzyloxyquinazolin-4-yl)amino)-4-fluoro-2-methyl-phenol-hydrochloride (ZM323881; 20 microg/ml); 4) ZM323881 (20 microg/ml) followed by VEGF application (50 microg/ml after 15 minutes); and 5) VEGF (10 microg/ml), these rats were premedicated with nitric oxide (NO) synthase blocker (N(G)-nitro-L-arginine-methyl-ester [L-NAME]; 1 mg/ml in drinking water) for 1 week before the experiment. Changes in gingival superficial venule diameter were measured by vital microscopy prior to and 1, 5, 15, 30, and 60 minutes after the administration of the experimental solutions. VEGF dose-dependently increased the venular diameter compared to saline. ZM323881 alone did not cause any alteration. Premedication with ZM323881 or L-NAME decreased the dilatory effects of VEGF. VEGFR2 immunohistochemical labeling was observed in the wall of the venules. There is no remarkable VEGF production under physiologic circumstances in rat gingiva, but VEGF is able to increase gingival blood flow through the activation of VEGF2 receptors. Furthermore, NO release may contribute to VEGF's vasodilatory effect.
    Journal of Periodontology 10/2009; 80(9):1518-23. · 2.40 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Salivary bacteria produce the enzyme lysine decarboxylase which converts lysine to cadaverine. In the absence of appropriate oral hygiene, overgrowth of these bacteria depletes lysine. This may contribute to gingival inflammation, while cadaverine contributes to oral malodor. A selective and sensitive capillary electrophoresis method with laser-induced fluorescence detection has been developed for the determination of cadaverine and lysine in saliva, as an indicator of lysine decarboxylase enzyme activity. The diamino compounds were separated in acidic background electrolyte in their mono-labeled form after derivatization with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F). Linearity and reproducibility of the method in the range 1-50 μmol L(-1) have been demonstrated using saliva samples. The method was applied for the measurement of cadaverine and lysine in the saliva of healthy volunteers with or without proper oral hygiene. In the absence of oral hygiene, the mol fraction of cadaverine to cadaverine plus lysine in saliva increased significantly (0.65 ± 0.13 vs. 0.39 ± 0.18, P < 0.001), indicating the presence of higher amount of bacterial lysine decarboxylase, that may contribute to periodontal diseases.
    Analytical and Bioanalytical Chemistry 04/2008; 391(2):647-51. · 3.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Nitric oxide is a free radical produced in host tissues by constitutive and inducible forms of the enzyme nitric oxide synthase. Nitric oxide plays physiological roles, but it is also involved in the pathophysiology of several inflammatory conditions, including arthritis, ulcerative colitis, and circulatory shock. Local increases in inducible nitric oxide synthase (iNOS) and reactive nitrogen products have also been demonstrated in humans and animals with periodontal disease. This masked, randomized, placebo-controlled preclinical investigation examined the effect of two mercaptoalkylguanidines, mercaptoethylguanidine (MEG) and guanidinoethyldisulfide (GED), which are iNOS inhibitors and reactive nitrogen scavenging compounds, on the development of experimental gingivitis in beagle dogs. Fifteen female, 1-year-old beagles first completed a 2-week dose-escalation experiment during which a maximum tolerated dose was determined for MEG and GED gels. Thereafter, all animals were brought to optimal gingival health by mechanical scaling, followed by rigorous daily toothbrushing over a 4-week washout period. Experimental gingivitis was then induced, with cessation of plaque control and institution of a soft diet over 8 weeks. Beagles randomly received 0.3% MEG, 0.3% GED, or placebo (vehicle) gels, topically applied twice daily to premolar teeth. Gingival inflammation, bleeding tendency, and supragingival plaque were clinically measured at baseline and at 2, 3, 4, 6, and 8 weeks. Comparisons among groups and between group pairs (active versus placebo) were made using Kruskal-Wallis tests. From baseline to day 7, all groups expressed similar indices. Thereafter, significant and time-dependent increases in the plaque index (PI), gingival index (GI), and percentage of bleeding on probing (%BOP) were observed in placebo-treated beagles. Mean GI scores for beagles treated with GED or MEG gels remained at or below baseline levels for the entire treatment period. At weeks 2, 3, 4, and 8, GI scores were significantly lower for MEG and GED groups compared to the placebo group (P<0.05). In addition, MEG and GED gels significantly reduced gingival bleeding responses by 8 weeks (P<0.05). Although placebo-treated beagles demonstrated %BOP scores of 43% at week 8, GED- and MEG-treated beagles exhibited %BOP scores of 21% and 26%, respectively. Since no statistical difference among PI scores was noted for any of the time points, neither mercaptoalkylguanidine appeared to affect supragingival plaque levels. The data from this preclinical study indicate that mercaptoalkylguanidines, topically administered, may significantly reduce experimental gingivitis in the beagle dog.
    Journal of Periodontology 04/2006; 77(3):385-91. · 2.40 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Local application of dental bond materials can cause pulpal vasodilation and hyperemia. Such local hemodynamic changes may be mediated by alterations in the levels of locally generated nitric oxide (NO). In different species systemic administration of NO synthase inhibitors leads to a decrease in pulpal blood flow. In contrast, the local administration of these inhibitors has not been tested yet. Therefore, the effect of locally blocked NO synthase on the internal diameter of rat pulpal arterioles under basal conditions and immediately after dental bond material application was studied by using vitalmicroscopic technique. The NO synthase blocker (L-NAME) was locally administered on a thinned dentine layer of the left lower incisor. L-NAME reduced the diameter of the pulpal arteriole both in basal and after bond material-induced hyperaemic conditions. These data suggest that the local formation of NO may have a significant role in the acute vasodilation induced by bond material application and also in maintenance of basal pulpal arteriolar tone.
    Life Sciences 09/2005; 77(12):1367-74. · 2.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: This study uses a cross-sectional design to examine the endothelial and inducible nitric oxide synthase (eNOS and iNOS, respectively) levels of gingival tissue. Fifteen subjects, 10 female and 5 male individuals (aged 14.6-21.2 years; mean 17.4 +/- 1.8 years), who needed extraction of the four first premolars for orthodontic reasons and who had indications for a gingivectomy were enrolled in the study. In each patient, two maxillary/mandibular premolars were extracted, and two months later an orthodontic appliance was placed in the same arch. A canine undergoing treatment for distal movement served as the test tooth (TT), whereas its contralateral canine was used as the control tooth (CT). The CT was included in the orthodontic appliance but was not subjected to the orthodontic force. Two weeks after the orthodontic appliance placement, clinical data consisting of the presence of supragingival plaque, bleeding on probing, and probing depth were collected from each experimental tooth. Immediately after, gingival tissue was collected from the distal aspect of each TT and CT for immunohistochemistry, messenger RNA reverse transcription by polymerase chain reaction, and Western blot analysis for both eNOS and iNOS. The results showed that no differences in clinical conditions occurred between the experimental teeth. On the contrary, both the eNOS and iNOS levels and the expression of the TTs were significantly greater than those of the CTs (all comparisons significant to P < .01). Our results indicate a role for gingival eNOS and iNOS during the early phases of orthodontic treatment in humans.
    The Angle Orthodontist 01/2005; 74(6):851-8. · 1.18 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Nitric oxide synthase (NOS) plays a significant role in the pathogenesis of pulpitis. In this study, we hypothesized the existence of endothelial (eNOS) and inducible (iNOS) enzyme isoforms in human dental pulp. Extracted third molar pulps were divided into groups based on clinical diagnosis: healthy, hyperemic, and irreversible pulpitis. We have localized the eNOS and iNOS by immunohistochemistry and have tested their mRNA expression by RT-PCR and protein levels by Western blots. eNOS is present in the endothelial cells and odontoblasts of the healthy pulp, but an elevation of eNOS mRNA and protein levels with a concomitant dilation of vessels was characteristic under pathological conditions. Healthy pulp tissue failed to exhibit any iNOS; however, acute inflammation enhanced the mRNA and protein levels of iNOS, mainly in the leukocytes. There are differences in localization and expression between eNOS and iNOS in healthy and inflamed dental pulp.
    Journal of Dental Research 05/2004; 83(4):312-6. · 3.83 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have investigated the role of the activation of nuclear poly(ADP-ribose) polymerase (PARP) enzyme, a mediator of downstream nitric oxide toxicity, using a combined approach of pharmacological inhibition and genetic disruption in a ligature-induced-periodontitis model in rats and mice. Immunohistochemical analysis revealed significantly increased poly(ADP-ribose) nuclear staining (indicative of PARP activation) in the subepithelial connective tissue of the ligated side compared with the non-ligated side. Ligation-induced periodontitis resulted in marked plasma extravasation in the gingivomucosal tissue and led to alveolar bone destruction compared with the non-ligated side, as measured by the Evans blue technique and by videomicroscopy, respectively. PARP inhibition with PJ34, as well as genetic PARP-1 deficiency, significantly reduced the extravasation and the alveolar bone resorption of the ligated side compared with controls. Thus, PARP activation contributes to the development of periodontal injury. Inhibition of PARP may represent a novel host response modulatory approach for the therapy of periodontitis.
    Journal of Dental Research 01/2004; 82(12):987-92. · 3.83 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We investigated the role of the inducible isoform of cyclooxygenase (COX-2) in a rat model of periodontitis using a selective COX-2 inhibitor NS-398. Periodontitis was produced by a silk ligature placed around the lower left 1st molar. Animals were treated with NS-398 (3 mg kg(-1) i.p., 2 times per day for 7 days) or vehicle. At Day 8, the gingivomucosal tissues encircling the mandibular 1st molars were removed on both sides for COX-2 immunohistochemistry, measurement of plasma extravasation by the Evans blue technique, and alveolar bone loss by videomicroscopy. Immunohistochemical analysis revealed numerous strongly COX-2-positive cells in the subepithelial tissues in the ligated side and only a few COX-2-reactive cells in the contralateral (control) side. Ligation significantly increased Evans blue extravasation in the gingivomucosal tissue and alveolar bone destruction compared to the control side. NS-398 treatment significantly reduced the plasma extravasation and alveolar bone resorption of the ligated side compared to vehicle administration. The present results suggest that COX-2 is induced by periodontitis, and plays an important role in gingival inflammation and alveolar bone destruction. In a previous study (Br J Pharmacol 1998;123:353-60) we found the expression of the inducible isoform of nitric oxide synthase in this model. Therefore, based on our own data and the literature, we propose that selective inhibition of these inducible enzymes might be a basis for adjunctive therapy, or new therapeutic approaches in periodontitis.
    Life Sciences 01/2002; 70(3):279-90. · 2.56 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: An increase in nitric oxide production has been demonstrated in periodontitis. Here we investigated the potential role of nitric-oxide-derived nitrating species (such as peroxynitrite) in a rat model of ligature-induced periodontitis. Formation of 3-nitrotyrosine, the stable product formed from tyrosine reacting with nitric-oxide-derived nitrating species, was detected in the gingivomucosal tissue. 3-Nitrotyrosine immunohistochemical analysis revealed a significant elevation in the number of immunopositive leukocytes, and higher immunoreactivity of the gingival ligaments and epithelium in the ligated than in the contralateral (control) side. On both sides, several 3-nitrotyrosine-positive bands and, on the ligated side, a unique 52-kDa 3-nitrotyrosine-positive band were detected by Western blot. However, in the sterile gingivomucosal tissue of rat pups, no 3-nitrotyrosine or inducible nitric oxide synthase immunoreactivity was found. Analysis of these data suggests that resident bacteria of the gingivomucosal tissue induce an increase in reactive nitrogen species, which is greatly enhanced by plaque formation in periodontitis.
    Journal of Dental Research 03/2001; 80(2):470-5. · 3.83 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Extracellular purines, including adenosine and ATP, are potent endogenous immunomodulatory molecules. Inosine, a degradation product of these purines, can reach high concentrations in the extracellular space under conditions associated with cellular metabolic stress such as inflammation or ischemia. In the present study, we investigated whether extracellular inosine can affect inflammatory/immune processes. In immunostimulated macrophages and spleen cells, inosine potently inhibited the production of the proinflammatory cytokines TNF-alpha, IL-1, IL-12, macrophage-inflammatory protein-1alpha, and IFN-gamma, but failed to alter the production of the anti-inflammatory cytokine IL-10. The effect of inosine did not require cellular uptake by nucleoside transporters and was partially reversed by blockade of adenosine A1 and A2 receptors. Inosine inhibited cytokine production by a posttranscriptional mechanism. The activity of inosine was independent of activation of the p38 and p42/p44 mitogen-activated protein kinases, the phosphorylation of the c-Jun terminal kinase, the degradation of inhibitory factor kappaB, and elevation of intracellular cAMP. Inosine suppressed proinflammatory cytokine production and mortality in a mouse endotoxemic model. Taken together, inosine has multiple anti-inflammatory effects. These findings, coupled with the fact that inosine has very low toxicity, suggest that this agent may be useful in the treatment of inflammatory/ischemic diseases.
    The Journal of Immunology 02/2000; 164(2):1013-9. · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The involvement of the L-arginine/NO pathway in the control of salivary fluid, amylase and epidermal growth factor (EGF) secretion was investigated in conscious rats. For the collection of saliva, an oesophageal cannula was implanted. To obtain steady secretion, submaximal carbachol background infusion was given. Different treatments included NO synthase inhibitor N(G)-nitro-L-arginine (NOLA; with or without phentolamine, propranolol), L-arginine, D-arginine and NO donor 3-morpholinosydnonimine (SIN-1) administration. Volume, amylase activity and EGF output in the secreted fluid were determined in 30 min mixed saliva samples. Carbachol infusion alone produced a modest, sustained salivary fluid and amylase secretion. NOLA (30 mg/kg) further increased both fluid (p<0.001) and amylase outputs (p<0.001). These latter effects were prevented by L-arginine but not by D-arginine or by phentolamine. Propranolol administration decreased both fluid and amylase secretion below the carbachol plateau, and NOLA did not modify this suppressed secretory rate. SIN-1 did not alter either volume or amylase secretion. Interestingly, NOLA given without carbachol did not modify salivation. Neither carbachol nor NOLA changed salivary EGF output. The present results suggest that the L-arginine/NO pathway has a modulatory role in the cholinergic control of salivary amylase secretion, but not in EGF output. The mechanisms of inhibitory action of NO on salivary fluid and amylase secretion remain to be identified.
    Life Sciences 01/1999; 64(11):953-63. · 2.56 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Excessive production of nitric oxide (NO), and the generation of peroxynitrite have been implicated in various proinflammatory conditions. In the present study, using mercaptoethylguanidine (MEG), a selective inhibitor of iNOS and a peroxynitrite scavenger, we investigated the role of iNOS and peroxynitrite in a rat model of periodontitis.Periodontitis was produced in rat by a ligature of 2/0 braided silk placed around the cervix of the lower left 1st molar. Animals were then divided into two groups: one group of rats was treated with MEG (30 mg kg−1, i.p., 4 times per day for 8 days), animals in the other group received vehicle. At day 8, the gingivomucosal tissue encircling the mandibular 1st molars was removed on both sides from ligated and sham operated animals for inducible nitric oxide synthase (iNOS) activity assay and for immunocytochemistry with anti-iNOS serum. Plasma extravasation was measured with the Evans blue technique. Alveolar bone loss was measured with a videomicroscopy.Ligation caused a significant, more than 3 fold increase in the gingival iNOS activity, whereas it did not affect iNOS activity on the contralateral side, when compared to sham-operated animals. Immunohistochemical analysis revealed iNOS-positive macrophages, lymphocytes and PMNs in the connective tissue and immunoreactive basal layers of epithelium on side of the ligature, and only a few iNOS-reactive connective tissue cells on the contralateral side. Ligation significantly increased Evans blue extravasation in gingivomucosal tissue and alveolar bone destruction compared to the contralateral side. MEG treatment significantly reduced the plasma extravasation and bone destruction.The present results demonstrated that ligature-induced periodontitis increases local NO production and that MEG treatment protects against the associated extravasation and bone destruction. Based on the present data, we propose that enhanced formation of NO and peroxynitrite plays a significant role in the pathogenesis of periodontitis.British Journal of Pharmacology (1998) 123, 353–360; doi:10.1038/sj.bjp.0701604
    British Journal of Pharmacology 01/1998; 123(3):353 - 360. · 5.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In a previous study we found that nitric oxide (NO) plays an essential role in the hemodynamic regulation of the feline dental pulp. However, no evidence for the presence of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) containing nerve fibers was found in the rat and cat dental pulps. In the present study, we are first to report the presence of a small number of NADPH-d positive and/or NO synthase immunoreactive perivascular and solitary varicose axons in the dental pulp and abundant number of similar axons in the gingiva of cats and dogs. These fibres may travel within the inferior alveolar nerve and might participate in sensory (i.e. pain) as well as in autonomic (i.e. regulation of blood flow) innervation of the dental pulp and gingiva.
    Neuroscience Letters 06/1997; 227(2):91-4. · 2.03 Impact Factor

Publication Stats

445 Citations
89 Downloads
2k Views
76.89 Total Impact Points

Institutions

  • 1995–2013
    • Semmelweis University
      • • Institute of Human Physiology and Clinical Experimental Research
      • • Department of Oral Biology
      Budapeŝto, Budapest, Hungary
    • University of Pennsylvania
      • Department of Neurology
      Philadelphia, PA, United States