Margreet R de Vries

Leiden University Medical Centre, Leyden, South Holland, Netherlands

Are you Margreet R de Vries?

Claim your profile

Publications (71)390.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE−/− mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications.
    Journal of Cellular and Molecular Medicine 08/2014; · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Effective neovascularization is crucial for recovery after cardiovascular events. Objective: As microRNAs regulate expression of up to several hundred target genes, we set out to identify microRNAs that target genes in all pathways of the multifactorial neovascularization process. Using www.targetscan.org, we performed a reverse target prediction analysis on a set of 197 genes involved in neovascularization. We found enrichment of binding sites for 27 microRNAs in a single microRNA gene cluster. MicroArray analyses showed upregulation of 14q32 microRNAs during neovascularization in mice following single femoral artery ligation. Methods and Results: Gene Silencing Oligonucleotides (GSOs) were used to inhibit four 14q32 microRNAs, miR-329, miR-487b, miR-494 and miR-495, one day prior to double femoral artery ligation. Blood flow recovery was followed by Laser Doppler Perfusion Imaging. All 4 GSOs clearly improved blood flow recovery after ischemia. Mice treated with GSO-495 or GSO-329 showed increased perfusion already after 3 days (30% perfusion vs. 15% in control) and those treated with GSO-329 showed a full recovery of perfusion after 7 days (vs. 60% in control). Increased collateral artery diameters (arteriogenesis) were observed in adductor muscles of GSO-treated mice, as well as increased capillary densities (angiogenesis) in the ischemic soleus muscle. In vitro, treatment with GSOs led to increased sprout formation and increased arterial endothelial cell proliferation, as well as to increased arterial myofibroblast proliferation. Conclusions: The 14q32 microRNA gene cluster is highly involved in neovascularization. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494 and miR-495 provides a promising tool for future therapeutic neovascularization.
    Circulation Research 08/2014; · 11.86 Impact Factor
  • Source
    European Journal of Vascular and Endovascular Surgery. 01/2014; 47(6):695–696.
  • European Journal of Vascular and Endovascular Surgery. 01/2014; 47(6):693–694.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the role of the TLR4-accessory molecule RP105 (CD180) in post-ischemic neovascularization, i.e. arteriogenesis and angiogenesis. TLR4-mediated activation of pro-inflammatory Ly6Chi monocytes is crucial for effective neovascularization. Immunohistochemical analyses revealed that RP105+ monocytes are present in the perivascular space of remodeling collateral arterioles. As RP105 inhibits TLR4 signaling, we hypothesized that RP105 deficiency would lead to an unrestrained TLR4-mediated inflammatory response and hence to enhanced blood flow recovery after ischemia.
    PLoS ONE 01/2014; 9(6):e99882. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In atherosclerosis, Toll-like receptors (TLRs) are traditionally linked to effects on tissue macrophages or foam cells. RP105, a structural TLR4 homolog, is an important regulator of TLR signaling. The effects of RP105 on TLR signaling vary for different leukocyte subsets known to be involved in atherosclerosis, making it unique in its role of either suppressing (in myeloid cells) or enhancing (in B cells) TLR-regulated inflammation in different cell types. We aimed to identify a role of TLR accessory molecule RP105 on circulating cells in atherosclerotic plaque formation. Irradiated LDLr(-/-) mice received RP105(-/-) or wild-type bone marrow. RP105(-/-) chimeras displayed a 57% reduced plaque burden. Interestingly, total and activated B-cell numbers were significantly reduced in RP105(-/-) chimeras. Activation of B1 B cells was unaltered, suggesting that RP105 deficiency only affected inflammatory B2 B cells. IgM levels were unaltered, but anti-oxidized low-density lipoprotein and anti-malondialdehyde-modified low-density lipoprotein IgG2c antibody levels were significantly lower in RP105(-/-) chimeras, confirming effects on B2 B cells rather than B1 B cells. Moreover, B-cell activating factor expression was reduced in spleens of RP105(-/-) chimeras. RP105 deficiency on circulating cells results in an intriguing unexpected TLR-associated mechanisms that decrease atherosclerotic lesion formation with alterations on proinflammatory B2 B cells.
    Arteriosclerosis Thrombosis and Vascular Biology 10/2013; · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Aim: In this study, we target the hypoxia inducible factor-1 alpha (HIF-1-alpha) pathway by short hairpin RNA (shRNA) interference therapy targeting prolyl hydroxylase-2 (shPHD2). We use the minicircle (MC) vector technology as an alternative for conventional nonviral plasmid (PL) vectors in order to improve neovascularization after unilateral hindlimb ischemia in a murine model. Methods and Results: Gene expression and transfection efficiency of MC and PL, both in vitro and in vivo, were assessed using bioluminescence imaging (BLI) and firefly Luciferase (Luc) reporter gene. C57Bl6 mice underwent unilateral electro-coagulation of the femoral artery and gastrocnemic muscle injection with MC-shPHD2, PL-shPHD2, or PBS as control. Blood flow recovery (BFR) was monitored using Laser Doppler Perfusion Imaging (LDPI), and collaterals were visualized by immunohistochemistry and angiography. MC-Luc showed a 4.6-fold higher in vitro BLI signal compared to PL-Luc. BLI signals in vivo were 4.3x105±3.3x105 (MC-Luc) versus 0.4x105±0.3x105 (PL-Luc) at day 28 (p=0.016). Compared to PL-shPHD2 or PBS, MC-shPHD2 significantly improved BFR, up to 50% from day 3 until day 14 after ischemia-induction. MC-shPHD2 significantly increased collateral density and capillary density, as monitored by alpha-smooth muscle actin (α-SMA) expression and CD31+ expression, respectively (CD31+: 40.3 MC-shPHD2 versus 18.1 PL-shPHD2 and 11.8 PBS). Angiography data confirmed the histological findings. Significant downregulation of PHD2 mRNA levels by MC-shPHD2 was confirmed by quantitative PCR (qPCR). Finally, Western blot analysis confirmed significant higher levels of HIF-1-alpha protein by MC-shPHD2, compared to PL-shPHD2 and PBS. Conclusions: This study provides initial evidence of a new potential therapeutic approach for peripheral artery disease (PAD). The combination of HIF-1-alpha pathway targeting by shPHD2 with the robust nonviral MC plasmid improved post-ischemic neovascularization, making this approach a promising potential treatment option for critical limb ischemia.
    Human gene therapy 10/2013; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) are important in innate immune responses, which are crucial in collateral artery formation (arteriogenesis). TLR4-/- mice undergoing hind limb ischemia show decreased perfusion recovery accompanied by an impaired infiltration of inflammatory cells. TLR antagonists are currently developed and tested with the objective to inhibit acute exacerbation of organ damaging immune responses. However, systemic inhibition of innate immune responses may negatively influence arteriogenesis. In this study, we evaluated if TLR4 inhibition by a potent TLR4 inhibitor (TAK-242) would negatively influence perfusion recovery in a mouse model for arteriogenesis. Whole blood from human and mouse origin was stimulated with the TLR4 ligand lipopolysaccharide (LPS) following TAK-242 incubation. After stimulation, cellular TLR4 activation was measured using FACS and Tumor Necrosis Factor alpha (TNF-α) release was measured using ELISA. Next, the effect of TAK-242 was tested in a mouse model for arteriogenesis on perfusion recovery. TLR4 responses measured by TNF-α levels were inhibited by TAK-242 in human and mouse blood after long-term stimulation. TAK-242 attenuated TLR4 responses in vivo, but did not inhibit perfusion recovery in mice.In conclusion, TAK-242 does not negatively influence perfusion recovery following hind limb ischemia despite its TLR4 inhibiting properties.
    Journal of cardiovascular pharmacology 09/2013; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NK cells are known to be involved in cardiovascular disease processes. One of these processes, vascular remodeling, may strongly differ between individuals and mouse strains such as the C57BL/6 and BALB/c. Moreover, C57BL/6 and BALB/c mice vary in immune responses and in the composition of their Natural Killer gene Complex (NKC). Here we study the role of NK cells, and in particular the C57BL/6 NKC in vascular remodeling and intimal hyperplasia formation. Methods and Results C57BL/6, BALB/c and CMV1(r) mice, a BALB/c strain congenic for the C57BL/6 NKC, were used in an injury induced cuff model and a vein graft model. NK cell depleted C57BL/6 mice demonstrated a 43% reduction in intimal hyperplasia after femoral artery cuff placement compared to control C57BL/6 mice (p<0.05). Cuff placement and vein grafting resulted in profound intimal hyperplasia in C57BL/6 mice, but also in CMV1(r) mice, whereas this was significantly less in BALB/c mice. Significant more leukocyte infiltrations and IFN-γ staining were seen in both C57BL/6 and CMV1(r) vein grafts compared to BALB/c vein grafts. These data demonstrate an important role for NK cells in intimal hyperplasia and vascular remodeling. Furthermore, the C57BL/6 NKC in CMV1(r) mice stimulates vascular remodeling most likely through the activation of (IFN-γ-secreting) NK-cells that modulate the outcome of vascular remodeling.
    Journal of Molecular and Cellular Cardiology 09/2013; · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: RNA-binding proteins are critical post-transcriptional regulators of RNA, and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMC), is currently unknown. Objective: We sought to determine the role of the RNA-binding protein Quaking (QKI) in regulating adult VSMC function and plasticity. Methods and Results: We identified that the RNA-binding protein Quaking (QKI) is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Qk(v) mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering non-contractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3 / Myocd_v1 mRNA balance, and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. Conclusions: We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.
    Circulation Research 08/2013; · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic arteriogenesis, that is, expansive remodeling of preexisting collaterals, using single-action factor therapies has not been as successful as anticipated. Modulation of factors that act as a master switch for relevant gene programs may prove more effective. Transcriptional coactivator p300-CBP-associated factor (PCAF) has histone acetylating activity and promotes transcription of multiple inflammatory genes. Because arteriogenesis is an inflammation-driven process, we hypothesized that PCAF acts as multifactorial regulator of arteriogenesis. After induction of hindlimb ischemia, blood flow recovery was impaired in both PCAF(-/-) mice and healthy wild-type mice treated with the pharmacological PCAF inhibitor Garcinol, demonstrating an important role for PCAF in arteriogenesis. PCAF deficiency reduced the in vitro inflammatory response in leukocytes and vascular cells involved in arteriogenesis. In vivo gene expression profiling revealed that PCAF deficiency results in differential expression of 3505 genes during arteriogenesis and, more specifically, in impaired induction of multiple proinflammatory genes. Additionally, recruitment from the bone marrow of inflammatory cells, in particular proinflammatory Ly6C(hi) monocytes, was severely impaired in PCAF(-/-) mice. These findings indicate that PCAF acts as master switch in the inflammatory processes required for effective arteriogenesis.
    Arteriosclerosis Thrombosis and Vascular Biology 06/2013; · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: The arteriovenous fistula (AVF) still suffers from a high number of failures caused by insufficient outward remodeling and intimal hyperplasia (IH) formation from which the exact mechanism is largely unknown. A suitable animal model is of vital importance in the unraveling of the underlying pathophysiology. However, current murine models of AVF failure do not incorporate the surgical configuration that is commonly used in humans. Because the hemodynamic profile is one of the key determinants that play a role in vascular remodeling in the AVF, it is preferable to use this same configuration in an animal model. Here we describe a novel murine model of AVF failure in which the configuration (end-to-side) is similar to what is most frequently performed in humans. METHODS: An AVF was created in 45 C57BL/6 mice by anastomosing the end of a branch of the external jugular vein to the side of the common carotid artery with interrupted sutures. The AVFs were harvested and analyzed histologically at days 7, 14, and 28. Identical veins of unoperated-on mice served as controls. Intravenous near-infrared fluorescent fluorophores were used to assess the patency of the fistula. RESULTS: The patency rates at days 7, 14, and 28 days were 88%, 90%, and 50%, respectively. The mean circumference increased up to day 14, with a maximum 1.4-fold increase at day 7 compared with the control group (1.82 ± 0.7 vs 1.33 ± 0.3 mm; P = .443). Between days 14 and 28, the circumference remained constant (2.36 ± 0.2 vs 2.45 ± 0.2 mm; P = .996). At 7 days after surgery, the intimal area consisted mainly of an acellular layer that was structurally analogous to a focal adherent thrombus. Starting at 14 days after surgery, venous IH increased significantly compared with the unoperated-on group (14 days: 115,090 ± 22,594 μm(2), 28 days: 234,619 ± 47,828 μm(2), unoperated group: 2368 ± 1056 μm(2); P = .001 and P < .001, respectively) and was mainly composed of cells positive for α-smooth muscle actin. We observed leukocytes in the adventitial side of the vein at all time points. CONCLUSIONS: Our novel murine AVF model, which incorporates a clinically relevant configuration of the anastomosis, displays similar features that are characteristic of failing human AVFs. Moreover, our findings suggest that coagulation and inflammation could both potentially play an important role in the formation of IH and subsequent AVF failure. Near-infrared fluoroscopy was a suitable alternative for conventional imaging techniques. This murine AVF-model is a valuable addition to the AVF animal model arsenal.
    Journal of vascular surgery: official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 05/2013; · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The repertoire of growth factors determines the biological engagement of human mesenchymal stromal cells (hMSCs) in processes such as immunomodulation and tissue repair. Hypoxia is a strong modulator of the secretome and well known stimuli to increase the secretion of pro-angiogenic molecules. In this manuscript, we employed a high throughput screening assay on an hMSCs cell line in order to identify small molecules that mimic hypoxia. Importantly, we show that the effect of these small molecules was cell type/species dependent, but we identified phenanthroline as a robust hit in several cell types. We show that phenanthroline induces high expression of hypoxia-target genes in hMSCs when compared with desferoxamine (DFO) (a known hypoxia mimic) and hypoxia incubator (2% O(2)). Interestingly, our microarray and proteomics analysis show that only phenanthroline induced high expression and secretion of another angiogenic cytokine, interleukin-8, suggesting that the mechanism of phenanthroline-induced hypoxia is distinct from DFO and hypoxia and involves the activation of other signaling pathways. We showed that phenanthroline alone was sufficient to induce blood vessel formation in a Matrigel plug assay in vivo paving the way to its application in ischeamic-related diseases.
    Biomaterials 01/2013; · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: T-cells are central to the immune response responsible for native atherosclerosis. The objective of this study is to investigate T-cell contribution to post-interventional accelerated atherosclerosis development, as well as the role of the CD28-CD80/86 co-stimulatory and Cytotoxic T-Lymphocyte Antigen (CTLA)-4 co-inhibitory pathways controlling T-cell activation status in this process. METHODS AND RESULTS: The role of T-cells and the CD28-CD80/86 co-stimulatory and CTLA-4 co-inhibitory pathways were investigated in a femoral artery cuff mouse model for post-interventional remodeling, with notable intravascular CTLA-4+ T-cell infiltration. Reduced intimal lesions developed in CD4(-/-) and CD80(-/-)CD86(-/-) mice compared to normal C57Bl/6J controls. Systemic abatacept-treatment, a soluble CTLA-4Ig fusion protein that prevents CD28-CD80/86 co-stimulatory T-cell activation, prevented intimal thickening by 58.5% (p=0.029). Next, hypercholesterolemic ApoE3*Leiden mice received abatacept-treatment which reduced accelerated atherosclerosis development by 78.1% (p=0.040) and prevented CD4 T-cell activation, indicated by reduced splenic fractions of activated KLRG1+, PD1+, CD69+ and CTLA-4+ T-cells. This correlated with reduced plasma interferon-γ and elevated interleukin-10 levels. The role of CTLA-4 was confirmed using CTLA-4 blocking antibodies, which strongly increased vascular lesion size by 66.7% (p=0.008), compared to isotype-treated controls. CONCLUSIONS: T-cell CD28-CD80/86 co-stimulation is vital for post-interventional accelerated atherosclerosis development and is regulated by CTLA-4 co-inhibition, indicating promising clinical potential for prevention of post-interventional remodeling by abatacept.
    International journal of cardiology 01/2013; · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.
    PLoS ONE 01/2013; 8(4):e61923. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RP105 (CD180) is TLR4 homologue lacking the intracellular TLR4 signaling domain and acts a TLR accessory molecule and physiological inhibitor of TLR4-signaling. The role of RP105 in vascular remodeling, in particular post-interventional remodeling is unknown. TLR4 and RP105 are expressed on vascular smooth muscle cells (VSMC) as well as in the media of murine femoral artery segments as detected by qPCR and immunohistochemistry. Furthermore, the response to the TLR4 ligand LPS was stronger in VSMC from RP105(-/-) mice resulting in a higher proliferation rate. In RP105(-/-) mice femoral artery cuff placement resulted in an increase in neointima formation as compared to WT mice (4982±974 µm(2) vs.1947±278 µm(2),p = 0.0014). Local LPS application augmented neointima formation in both groups, but in RP105(-/-) mice this effect was more pronounced (10316±1243 µm(2) vs.4208±555 µm(2),p = 0.0002), suggesting a functional role for RP105. For additional functional studies, the extracellular domain of murine RP105 was expressed with or without its adaptor protein MD1 and purified. SEC-MALSanalysis showed a functional 2∶2 homodimer formation of the RP105-MD1 complex. This protein complex was able to block the TLR4 response in whole blood ex-vivo. In vivo gene transfer of plasmid vectors encoding the extracellular part of RP105 and its adaptor protein MD1 were performed to initiate a stable endogenous soluble protein production. Expression of soluble RP105-MD1 resulted in a significant reduction in neointima formation in hypercholesterolemic mice (2500±573 vs.6581±1894 µm(2),p<0.05), whereas expression of the single factors RP105 or MD1 had no effect. RP105 is a potent inhibitor of post-interventional neointima formation.
    PLoS ONE 01/2013; 8(7):e67923. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Failure of vein graft conduits due to vein graft thickening, accelerated atherosclerosis and subsequent plaque rupture is applicable to 50% of all vein grafts within 10 years. New potential therapeutic targets to treat vein graft disease may be found in components of the innate immune system, such as mast cells and complement factors, which are known to be involved in atherosclerosis and plaque destabilization. Interestingly, mast cells can be activated by complement factor C5a and therefore a direct role for C5a mediated mast cell activation in vein graft disease is anticipated. We hypothesize that C5a mediated mast cell activation is involved in the development and destabilization of vein graft lesions.Methods and ResultsMast cells accumulated in time in murine vein graft lesions and C5a and C5a-receptor (CD88) expression was up-regulated during vein graft disease in Apolipoprotein E- deficient mice. Mast cell activation with dinitrophenyl resulted in a profound increase in vein graft thickening and in the number of plaque disruptions. C5a application enhanced vein graft lesion formation, while treatment with a C5a-receptor antagonist resulted in decreased vein graft disease. C5a most likely exerts its function via mast cell activation since the mast cell inhibitor cromolyn totally blocked C5a enhanced vein graft disease. CONCLUSIONS: These data provide evidence that complement factor C5a induced mast cell activation is highly involved in vein graft disease, which identifies new targets to prevent vein graft disease.
    Cardiovascular research 10/2012; · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of toll-like receptors (TLRs) in vascular remodeling is well established. However, the involvement of the endosomal TLRs is unknown. Here, we study the effect of combined blocking of TLR7 and TLR9 on postinterventional remodeling and accelerated atherosclerosis. In hypercholesterolemic apolipoprotein E*3-Leiden mice, femoral artery cuff placement led to strong increase of TLR7 and TLR9 presence demonstrated by immunohistochemistry. Blocking TLR7/9 with a dual antagonist in vivo reduced neointimal thickening and foam cell accumulation 14 days after surgery by 65.6% (P=0.0079). Intima/media ratio was reduced by 64.5% and luminal stenosis by 62.8%. The TLR7/9 antagonist reduced the arterial wall inflammation, with reduced macrophage infiltration, decreased cytoplasmic high-mobility group box 1 expression, and altered serum interleukin-10 levels. Stimulation of cultured macrophages with TLR7 and TLR9 ligands enhanced tumor necrosis factor-α expression, which is decreased by TLR7/9 antagonist coadministration. Additionally, the antagonist abolished the TLR7/9-enhanced low-density lipoprotein uptake. The antagonist also reduced oxidized low-density lipoprotein-induced foam cell formation, most likely not via decreased influx but via increased efflux, because CD36 expression was unchanged whereas interleukin-10 levels were higher (36.1 ± 22.3 pg/mL versus 128.9 ± 6.6 pg/mL; P=0.008). Blocking TLR7 and TLR9 reduced postinterventional vascular remodeling and foam cell accumulation indicating TLR7 and TLR9 as novel therapeutic targets.
    Arteriosclerosis Thrombosis and Vascular Biology 05/2012; 32(8):e72-80. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta (TGF-β) stimulates both ischaemia induced angiogenesis and shear stress induced arteriogenesis by signalling through different receptors. How these receptors are involved in both these processes of blood flow recovery is not entirely clear. In this study the role of TGF-β receptors 1 and endoglin is assessed in neovascularization in mice. Unilateral femoral artery ligation was performed in mice heterozygous for either endoglin or ALK1 and in littermate controls. Compared with littermate controls, blood flow recovery, monitored by laser Doppler perfusion imaging, was significantly hampered by maximal 40% in endoglin heterozygous mice and by maximal 49% in ALK1 heterozygous mice. Collateral artery size was significantly reduced in endoglin heterozygous mice compared with controls but not in ALK1 heterozygous mice. Capillary density in ischaemic calf muscles was unaffected, but capillaries from endoglin and ALK1 heterozygous mice were significantly larger when compared with controls. To provide mechanistic evidence for the differential role of endoglin and ALK1 in shear induced or ischaemia induced neovascularization, murine endothelial cells were exposed to shear stress in vitro. This induced increased levels of endoglin mRNA but not ALK1. In this study it is demonstrated that both endoglin and ALK1 facilitate blood flow recovery. Importantly, endoglin contributes to both shear induced collateral artery growth and to ischaemia induced angiogenesis, whereas ALK1 is only involved in ischaemia induced angiogenesis.
    Journal of Cellular and Molecular Medicine 03/2012; 16(10):2440-50. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activated cells in atherosclerotic lesions expose phosphatidylserine (PS) on their surface. Annexin A5 (AnxA5) binds to PS and is used for imaging atherosclerotic lesions. Recently, AnxA5 was shown to inhibit vascular inflammatory processes after vein grafting. Here, we report a therapeutic role for AnxA5 in post-interventional vascular remodeling in a mouse model mimicking percutaneous coronary intervention (PCI). Associations between the rs4833229 (OR = 1.29 (CI 95%), p(allelic) = 0.011) and rs6830321 (OR = 1.35 (CI 95%), p(allelic) = 0.003) SNPs in the AnxA5 gene and increased restenosis-risk in patients undergoing PCI were found in the GENDER study. To evaluate AnxA5 effects on post-interventional vascular remodeling and accelerated atherosclerosis development in vivo, hypercholesterolemic ApoE(-/-) mice underwent femoral arterial cuff placement to induce intimal thickening. Dose-dependent effects were investigated after 3 days (effects on inflammation and leukocyte recruitment) or 14 days (effects on remodeling) after cuff placement. Systemically administered AnxA5 in doses of 0.1, 0.3 and 1.0mg/kg compared to vehicle reduced early leukocyte and macrophage adherence up to 48.3% (p = 0.001) and diminished atherosclerosis development by 71.2% (p = 0.012) with a reduction in macrophage/foam cell presence. Moreover, it reduced the expression of the endoplasmic reticulum stress marker GRP78/BiP, indicating lower inflammatory activity of the cells present. AnxA5 SNPs could serve as markers for restenosis after PCI and AnxA5 therapeutically prevents vascular remodeling in a dose-dependent fashion, together indicating clinical potential for AnxA5 against post-interventional remodeling.
    Atherosclerosis 02/2012; 221(2):333-40. · 3.71 Impact Factor

Publication Stats

800 Citations
390.29 Total Impact Points

Institutions

  • 2006–2013
    • Leiden University Medical Centre
      • • Department of Cardiology
      • • Department of Surgery
      • • Department of Human Genetics
      Leyden, South Holland, Netherlands
    • TNO
      Delft, South Holland, Netherlands
  • 2012
    • VU University Medical Center
      Amsterdamo, North Holland, Netherlands
  • 2010
    • Academisch Medisch Centrum Universiteit van Amsterdam
      • Department of Medical Biochemistry
      Amsterdam, North Holland, Netherlands
  • 2002
    • University of Amsterdam
      • Faculty of Medicine AMC
      Amsterdam, North Holland, Netherlands