Steven S An

Johns Hopkins University, Baltimore, Maryland, United States

Are you Steven S An?

Claim your profile

Publications (44)278.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of living cells to exert physical forces upon their surrounding is the necessary prerequisite for diverse biological processes, such as local cellular migrations in wound healing to metastatic-invasion of cancer. How forces are coopted in metastasis has remained unclear, however, because the mechanical interplay between cancer cells and the various stromal components has not been experimentally accessible. Current dogma implicates inflammation in these mechanical processes. Using Fourier transform traction microscopy, we measured the force-generating capacity of human breast cancer cells occupying a spectrum of invasiveness as well as basal and inducible COX-2 expression (MCF-7<SUM-149<MDA-MB-231). Compared with non-invasive MCF-7 and moderately-invasive SUM-149, poorly-differentiated MDA-MB-231 cells showed increased cellular dispersion on collagen matrix that was accompanied by emergent distribution of contractile stresses at the interface between the adherent cell and its substrate, defined herein as the traction field. In metastatic MDA-MB-231 cells, the local tractions were precisely tuned to the surrounding matrix rigidity in a physiologic range with the concomitant expression of mechanosensitive integrin β1. These discrete responses at the single-cell resolution were correlated with PGE2 secretion and were ablated by shRNA-mediated knockdown of COX-2. Both COX-2-silenced and COX-2-expressing cells expressed EP2 and EP4 receptors, but not EP1 and EP3. Exogenous addition of PGE2 increased cell tractions and stiffened the underlying cytoskeletal network. To our knowledge this is the first report linking the expression of COX-2 with mechanotransduction of human breast cancer cells, and the regulation of COX-2-PGE2-EP signaling with physical properties of the tumor microenvironment. Drug treatments aimed at reducing this mechanical interplay may have therapeutic potential in the treatment of breast cancer.
    Cancer biology & therapy 02/2015; DOI:10.1080/15384047.2014.1003004 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TWIST1 gene has diverse roles in development and pathologic diseases such as cancer. TWIST1 is a dimeric basic helix-loop-helix (bHLH) transcription factor existing as TWIST1-TWIST1 or TWIST1-E12/47. TWIST1 partner choice and DNA binding can be influenced during development by phosphorylation of Thr125 and Ser127 of the Thr-Gln-Ser (TQS) motif within the bHLH of TWIST1. The significance of these TWIST1 phosphorylation sites for metastasis is unknown. We created stable isogenic prostate cancer cell lines overexpressing TWIST1 wild-type, phospho-mutants, and tethered versions. We assessed these isogenic lines using assays that mimic stages of cancer metastasis. In vitro assays suggested the phospho-mimetic Twist1-DQD mutation could confer cellular properties associated with pro-metastatic behavior. The hypo-phosphorylation mimic Twist1-AQA mutation displayed reduced pro-metastatic activity compared to wild-type TWIST1 in vitro, suggesting that phosphorylation of the TWIST1 TQS motif was necessary for pro-metastatic functions. In vivo analysis demonstrates that the Twist1-AQA mutation exhibits reduced capacity to contribute to metastasis, whereas the expression of the Twist1-DQD mutation exhibits proficient metastatic potential. Tethered TWIST1-E12 heterodimers phenocopied the Twist1-DQD mutation for many in vitro assays, suggesting that TWIST1 phosphorylation may result in heterodimerization in prostate cancer cells. Lastly, the dual phosphatidylinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor BEZ235 strongly attenuated TWIST1-induced migration that was dependent on the TQS motif. TWIST1 TQS phosphorylation state determines the intensity of TWIST1-induced pro-metastatic ability in prostate cancer cells, which may be partly explained mechanistically by TWIST1 dimeric partner choice.
    Neoplasia (New York, N.Y.) 01/2015; 63(1). DOI:10.1016/j.neo.2014.10.009 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease.
    Oncotarget 11/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: G-protein coupled receptors (GPCRs) are the most pervasive signaling superfamily in the body and act as receptors to endogenous agonists and drugs. For β-agonist mediated bronchodilation, the receptor: G-protein: effector network is the β2-adrenergic receptor (β2AR), Gs, and adenylyl cyclase, expressed on airway smooth muscle (ASM). Using ASM-targeted transgenesis, we have previously explored which of these three early signaling elements represents a limiting factor, or bottleneck, in transmission of the signal from agonist binding to ASM relaxation. Here we overexpressed Gαs in transgenic mice and found that agonist-promoted relaxation of airways was enhanced in direct proportion to the level of Gαs expression. Contraction of ASM from acetylcholine was not affected in Gαs transgenics, nor was relaxation by bitter taste receptors. Furthermore, agonist-promoted (but not basal) cAMP production in Gαs-transgenic mouse ASM cells was enhanced compared to ASM from nontransgenic littermates. Agonist-promoted inhibition of platelet derived growth factor-stimulated ASM proliferation was also enhanced in Gαs mouse ASM. The enhanced maximal β-agonist response for relaxation, cAMP production, and growth inhibition were all of similar magnitude. Taken together, it appears that a limiting factor in β-agonist responsiveness in ASM is the expression level of Gαs. Gene therapy or pharmacological means of increasing Gαs (or its coupling efficiency to β2AR) thus represent an interface for development of novel therapeutic agents for improvement of β-agonist therapy.
    AJP Lung Cellular and Molecular Physiology 09/2014; DOI:10.1152/ajplung.00209.2014 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhaled beta-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, though this assumption is based on associative and not direct evidence. Recent studies have asserted that Epac - and not PKA -mediates the relaxation of ASM observed with beta-agonist treatment. This study aims to clarify the role of PKA in the pro-relaxant effects of beta-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased beta-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, beta-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on regulation of contraction or pro-contractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which beta-agonists exert their relaxant effects.
    Journal of Biological Chemistry 06/2014; 289(33). DOI:10.1074/jbc.M114.557652 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Central arterial wall stiffening, driven by a chronic inflammatory milieu, accompanies arterial diseases, the leading cause of cardiovascular (CV) morbidity and mortality in Western society. An increase in central arterial wall stiffening, measured as an increase in aortic pulse wave velocity (PWV), is a major risk factor for clinical CV disease events. However, no specific therapies to reduce PWV are presently available. In rhesus monkeys, a 2 year diet high in fat and sucrose (HFS) increases not only body weight and cholesterol, but also induces prominent central arterial wall stiffening and increases PWV and inflammation. The observed loss of endothelial cell integrity, lipid and macrophage infiltration, and calcification of the arterial wall were driven by genomic and proteomic signatures of oxidative stress and inflammation. Resveratrol prevented the HFS-induced arterial wall inflammation and the accompanying increase in PWV. Dietary resveratrol may hold promise as a therapy to ameliorate increases in PWV.
    Cell Metabolism 05/2014; 20(1). DOI:10.1016/j.cmet.2014.04.018 · 16.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we explored the impact of hydrogen sulfide (H2S) on biophysical properties of the primary human airway smooth muscle (ASM)-the end effector of acute airway narrowing in asthma. Using Magnetic Twisting Cytometry (MTC), we measured dynamic changes in the stiffness of isolated ASM, at the single-cell level, in response to varying doses of GYY4137 (1-10 mM). GYY4137 slowly released appreciable levels of H2S in the range of 10-275 μM, and H2S released was long lived. In isolated human ASM cells, GYY4137 acutely decreased stiffness (i.e. an indicator of the single-cell relaxation) in a dose-dependent fashion, and stiffness decreases were sustained in culture for 24h. Human ASM cells showed protein expressions of cystathionine-γ-lyase (CSE; a H2S synthesizing enzyme) and ATP-sensitive potassium (KATP) channels. The KATP channel opener pinacidil effectively relaxed isolated ASM cells. In addition, pinacidil-induced ASM relaxation was completely inhibited by the treatment of cells with the KATP channel blocker glibenclamide. Glibenclamide also markedly attenuated GYY4137-mediated relaxation of isolated human ASM cells. Taken together, our findings demonstrate that H2S causes the relaxation of human ASM and implicate as well the role for sarcolemmal KATP channels. Finally, given that ASM cells express intrinsic enzymatic machinery of generating H2S, we suggest thereby this class of gasotransmitter can be further exploited for potential therapy against obstructive lung disease.
    Biochemical and Biophysical Research Communications 03/2014; 446(1). DOI:10.1016/j.bbrc.2014.02.129 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult stem cells hold great promise as a source of diverse terminally differentiated cell types for tissue engineering applications. However, due to the complexity of chemical and mechanical cues specifying differentiation outcomes, development of arbitrarily complex geometric and structural arrangements of cells, adopting multiple fates from the same initial stem cell population, has been difficult. Here, we show that the topography of the cell adhesion substratum can be an instructive cue to adult stem cells and topographical variations can strongly bias the differentiation outcome of the cells towards adipocyte or osteocyte fates. Switches in cell fate decision from adipogenic to osteogenic lineages were accompanied by changes in cytoskeletal stiffness, spanning a considerable range in the cell softness/rigidity spectrum. Our findings suggest that human mesenchymal stem cells (hMSC) can respond to the varying density of nanotopographical cues by regulating their internal cytoskeletal network and use these mechanical changes to guide them toward making cell fate decisions. We used this finding to design a complex two-dimensional pattern of co-localized cells preferentially adopting two alternative fates, thus paving the road for designing and building more complex tissue constructs with diverse biomedical applications.
    Biomaterials 03/2014; 35(8):2401-2410. DOI:10.1016/j.biomaterials.2013.11.037 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bitter taste receptors (TAS2Rs) have recently been found to be expressed on human airway smooth muscle (HASM) and their activation results in marked relaxation. These agents have been proposed as a new class of bronchodilators in the treatment of obstructive lung diseases since they act via a different mechanism than -agonists. The TAS2R signal transduction pathway in HASM has multiple elements that are potentially subject to regulation by inflammatory, genetic, and epigenetic mechanisms associated with asthma. To address this, expression, signaling and physiologic functions of the three major TAS2Rs (subtypes 10, 14, 31) on HASM were studied. Transcript expression of these TAS2Rs was not decreased in HASM derived from asthmatic donors compared to nonasthmatics (n=6 from each group). In addition, [Ca2+]i signaling using TAS2R subtype specific agonists (diphenhydramine, chloroquine, saccharin, and flufenamic acid) was not impaired in the asthmatic-derived cells, nor was the response to quinine which activates all three subtypes. HASM cell mechanics measured by magnetic twisting cytometry revealed equivalent TAS2R-mediated relaxation of methacholine treated cells between the two groups. Human precision cut lung slices (PCLS) treated with IL-13 caused a decrease in -agonist (formoterol) mediated relaxation of carbachol contracted airways compared to control slices. In contrast, TAS2R-mediated relaxation was unaffected by IL-13. Taken together, we conclude that TAS2R expression or function is unaffected in HASM derived from asthmatics or the IL-13 inflammatory environment.
    American Journal of Respiratory Cell and Molecular Biology 11/2013; DOI:10.1165/rcmb.2013-0439RC · 4.11 Impact Factor
  • International Journal of Radiation OncologyBiologyPhysics 10/2013; 87(2):S169-S170. DOI:10.1016/j.ijrobp.2013.06.438 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer (PCa). Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in PCa cells using in vitro assays which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extra-thoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for PCa cells to colonize metastatic lung lesions and extra-thoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in PCa cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and PCa metastasis. Implications: Targeting the Twist box domain of Twist1 may effectively limit prostate cancer metastatic potential.
    Molecular Cancer Research 08/2013; 11(11). DOI:10.1158/1541-7786.MCR-13-0218-T · 4.50 Impact Factor
  • Cancer Research 08/2013; 73(8 Supplement):1098-1098. DOI:10.1158/1538-7445.AM2013-1098 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) can modulate arterial stiffness by causing regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the crosslinking of matrix proteins. Nitric oxide (NO) S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its crosslinking function latent. In the present study, the role of eNOS derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix associated TG2 and TG2 cross-linking function were higher while TG2 S-nitrosylation was lower in the eNOS-/- compared to wild type (WT) mice. Pulse wave velocity (PWV) and mean arterial pressure (MAP) measured non-invasively were elevated in the eNOS-/- compared to WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS-/- mice were significantly stiffer as determined by tensile testing. The carotid arteries of the eNOS-/- mice were also stiffer as determined by pressure-dimension analysis. Invasive methods to determine the PWV-MAP relationship showed that PWV in eNOS-/- and WT diverge at higher MAP. Thus, eNOS derived NO regulates TG2 localization and function and contributes to vascular stiffness.
    AJP Heart and Circulatory Physiology 07/2013; DOI:10.1152/ajpheart.00103.2013 · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug resistance is a major limitation to the successful treatment of advanced prostate cancer (PCa). Patients who have metastatic, castration-resistant PCa (mCRPC) are treated with chemotherapeutics. However, these standard therapy modalities culminate in the development of resistance. We established paclitaxel resistance in a classic, androgen-insensitive mCRPC cell line (DU145) and, using a suite of molecular and biophysical methods, characterized the structural and functional changes in vitro and in vivo that are associated with the development of drug resistance. After acquiring paclitaxel-resistance, cells exhibited an abnormal nuclear morphology with extensive chromosomal content, an increase in stiffness, and faster cytoskeletal remodeling dynamics. Compared with the parental DU145, paclitaxel-resistant (DU145-TxR) cells became highly invasive and motile in vitro, exercised greater cell traction forces, and formed larger and rapidly-growing tumours in mouse xenografts. Furthermore, DU145-TxR cells showed a discrete loss of keratins but a distinct gain of ZEB1, Vimentin and Snail, suggesting an epithelial-to-mesenchymal transition. These findings demonstrate, for the first time, that paclitaxel resistance in PCa is associated with a trans-differentiation of epithelial cell machinery that enables more aggressive and invasive phenotype and portend new strategies for developing novel biomarkers and effective treatment modalities for PCa patients. J. Cell. Biochem. © 2012 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 06/2013; 114(6). DOI:10.1002/jcb.24464 · 3.37 Impact Factor
  • Cancer Research 02/2013; 73(3 Supplement):B45-B45. DOI:10.1158/1538-7445.TIM2013-B45 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca(2+) concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β(2)-adrenergic receptor (β(2)AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β(2)AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β(2)AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca(2+) concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β(2)AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β(2)AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.
    AJP Lung Cellular and Molecular Physiology 06/2012; 303(4):L304-11. DOI:10.1152/ajplung.00126.2012 · 4.04 Impact Factor
  • Source
    Nature medicine 05/2012; 18(5):650-1. DOI:10.1038/nm.2734 · 28.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GB) is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF), which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1) through the regulation of focal adhesion dynamics and cell contractility and (2) through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.
    PLoS Biology 05/2012; 10(5):e1001320. DOI:10.1371/journal.pbio.1001320 · 11.77 Impact Factor
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012

Publication Stats

1k Citations
278.80 Total Impact Points

Institutions

  • 2008–2015
    • Johns Hopkins University
      • • Department of Chemical and Biomolecular Engineering
      • • Department of Environmental Health Sciences
      Baltimore, Maryland, United States
  • 2007–2014
    • Johns Hopkins Bloomberg School of Public Health
      • Department of Environmental Health Sciences
      Baltimore, Maryland, United States
  • 2005–2006
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2004
    • Harvard University
      • Department of Environmental Health
      Cambridge, MA, United States