Jarrod A Marto

Dana-Farber Cancer Institute, Boston, Massachusetts, United States

Are you Jarrod A Marto?

Claim your profile

Publications (95)686.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: BRCA1 is a breast and ovarian tumor suppressor. Given its numerous incompletely understood functions and the possibility that more exist, we performed complementary systematic screens in search of new BRCA1 protein-interacting partners. New BRCA1 functions and/or a better understanding of existing ones were sought. Among the new interacting proteins identified, genetic interactions were detected between BRCA1 and four of the interactors: TONSL, SETX, TCEANC, and TCEA2. Genetic interactions were also detected between BRCA1 and certain interactors of TONSL, including both members of the FACT complex. From these results, a new BRCA1 function in the response to transcription-associated DNA damage was detected. Specifically, new roles for BRCA1 in the restart of transcription after UV damage and in preventing or repairing damage caused by stabilized R loops were identified. These roles are likely carried out together with some of the newly identified interactors. This new function may be important in BRCA1 tumor suppression, since the expression of several interactors, including some of the above-noted transcription proteins, is repeatedly aberrant in both breast and ovarian cancers.
    Genes & development. 09/2014; 28(17):1957-75.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.
    Nature 06/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration is essential for embryonic development and tissue formation in all animals. cacn-1 is a conserved gene of unknown molecular function identified in a genome-wide screen for genes that regulate distal tip cell (DTC) migration in the nematode worm Caenorhabditis elegans. In this study we take a proteomics approach to understand CACN-1 function. To isolate CACN-1 interacting proteins, we used an in vivo tandem-affinity purification (TAP) strategy. TAP-tagged CACN-1 complexes were isolated from C. elegans lysate, analyzed by mass spectrometry, and characterized bioinformatically. Results suggest significant interaction of CACN-1 with the C. elegans spliceosome. All of the identified interactors were screened for DTC migration phenotypes using RNAi. Depletion of many of these factors led to distal tip cell migration defects, particularly a failure to stop migrating, a phenotype commonly seen in cacn-1 deficient animals. The results of this screen identify 8 novel regulators of cell migration and suggest CACN-1 may participate in a protein network dedicated to high fidelity gonad development. The composition of proteins comprising the CACN-1 network suggests that this critical developmental module may exert its influence through alternative splicing or other post-transcriptional gene regulation.
    G3 (Bethesda, Md.). 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bHLH transcription factor Olig2 is expressed in cycling neural progenitor cells but also in terminally differentiated, myelinating oligodendrocytes. Sustained expression of Olig2 is counterintuitive because all known functions of the protein in expansion of neural progenitors and specification of oligodendrocyte progenitors are completed with the formation of mature white matter. How are the biological functions of Olig2 suppressed in terminally differentiated oligodendrocytes? In previous studies, we have shown that a triple serine motif in the amino terminus of Olig2 is phosphorylated in cycling neural progenitors but not in their differentiated progeny. We now show that phosphorylation of the triple serine motif regulates intranuclear compartmentalization of murine Olig2. Phosphorylated Olig2 is preferentially localized to a transcriptionally active "open" chromatin compartment together with coregulator proteins essential for regulation of gene expression. Unphosphorylated Olig2, as seen in mature white matter, is localized mainly within a transcriptionally inactive, chromatin fraction characterized by condensed and inaccessible DNA. Of special note is the observation that the p53 tumor suppressor protein is confined to the open chromatin fraction. Proximity ligation assays show that phosphorylation brings Olig2 within 30 nm of p53 within the open chromatin compartment. The data thus shed light on previously noted promitogenic functions of phosphorylated Olig2, which reflect, at least in part, an oppositional relationship with p53 functions.
    The Journal of neuroscience : the official journal of the Society for Neuroscience. 06/2014; 34(25):8507-18.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Directly targeting oncogenic V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras) with small-molecule inhibitors has historically been considered prohibitively challenging. Recent reports of compounds that bind directly to the K-Ras G12C mutant suggest avenues to overcome key obstacles that stand in the way of developing such compounds. We aim to target the guanine nucleotide (GN)-binding pocket because the natural contents of this pocket dictate the signaling state of K-Ras. Here, we characterize the irreversible inhibitor SML-8-73-1 (SML), which targets the GN-binding pocket of K-Ras G12C. We report a high-resolution X-ray crystal structure of G12C K-Ras bound to SML, revealing that the compound binds in a manner similar to GDP, forming a covalent linkage with Cys-12. The resulting conformation renders K-Ras in the open, inactive conformation, which is not predicted to associate productively with or activate downstream effectors. Conservation analysis of the Ras family GN-binding pocket reveals variability in the side chains surrounding the active site and adjacent regions, especially in the switch I region. This variability may enable building specificity into new iterations of Ras and other GTPase inhibitors. High-resolution in situ chemical proteomic profiling of SML confirms that SML effectively discriminates between K-Ras G12C and other cellular GTP-binding proteins. A biochemical assay provides additional evidence that SML is able to compete with millimolar concentrations of GTP and GDP for the GN-binding site.
    Proceedings of the National Academy of Sciences of the United States of America. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alternative RNA splicing (AS) regulates proteome diversity, including isoform-specific expression of several pluripotency genes. Here, we integrated global gene expression and proteomic analyses and identified a molecular signature suggesting a central role for AS in maintaining human pluripotent stem cell (hPSC) self-renewal. We demonstrate that the splicing factor SFRS2 is an OCT4 target gene required for pluripotency. SFRS2 regulates AS of the methyl-CpG binding protein MBD2, whose isoforms play opposing roles in maintenance of and reprogramming to pluripotency. Although both MDB2a and MBD2c are enriched at the OCT4 and NANOG promoters, MBD2a preferentially interacts with repressive NuRD chromatin remodeling factors and promotes hPSC differentiation, whereas overexpression of MBD2c enhances reprogramming of fibroblasts to pluripotency. The miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and MDB2a. These data suggest that OCT4, SFRS2, and MBD2 participate in a positive feedback loop, regulating proteome diversity in support of hPSC self-renewal and reprogramming.
    Cell stem cell 05/2014; · 23.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excluding 53BP1 from chromatin is required to attenuate the DNA damage response during mitosis, yet the functional relevance and regulation of this exclusion are unclear. Here we show that 53BP1 is phosphorylated during mitosis on two residues, T1609 and S1618, located in its well-conserved ubiquitination-dependent recruitment (UDR) motif. Phosphorylating these sites blocks the interaction of the UDR motif with mononuclesomes containing ubiquitinated histone H2A and impedes binding of 53BP1 to mitotic chromatin. Ectopic recruitment of 53BP1-T1609A/S1618A to mitotic DNA lesions was associated with significant mitotic defects that could be reversed by inhibiting nonhomologous end-joining. We also reveal that protein phosphatase complex PP4C/R3β dephosphorylates T1609 and S1618 to allow the recruitment of 53BP1 to chromatin in G1 phase. Our results identify key sites of 53BP1 phosphorylation during mitosis, identify the counteracting phosphatase complex that restores the potential for DDR during interphase, and establish the physiological importance of this regulation.
    Molecular cell 04/2014; · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Timely DNA replication across damaged DNA is critical for maintaining genomic integrity. Translesion DNA synthesis (TLS) allows bypass of DNA lesions using error-prone TLS polymerases. The E3 ligase RAD18 is necessary for proliferating cell nuclear antigen (PCNA) monoubiquitination and TLS polymerase recruitment; however, the regulatory steps upstream of RAD18 activation are less understood. Here, we show that the UBZ4 domain-containing transcriptional repressor ZBTB1 is a critical upstream regulator of TLS. The UBZ4 motif is required for PCNA monoubiquitination and survival after UV damage. ZBTB1 associates with KAP-1, a transcriptional repressor whose phosphorylation relaxes chromatin after DNA damage. ZBTB1 depletion impairs formation of phospho-KAP-1 at UV damage sites and reduces RAD18 recruitment. Furthermore, phosphorylation of KAP-1 is necessary for efficient PCNA modification. We propose that ZBTB1 is required for localizing phospho-KAP-1 to chromatin and enhancing RAD18 accessibility. Collectively, our study implicates a ubiquitin-binding protein in orchestrating chromatin remodeling during DNA repair.
    Molecular cell 03/2014; · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor SOX2 is an essential regulator of pluripotent stem cells and promotes development and maintenance of squamous epithelia. We previously reported that SOX2 is an oncogene and subject to highly recurrent genomic amplification in squamous cell carcinomas (SCCs). Here, we have further characterized the function of SOX2 in SCC. Using ChIP-seq analysis, we compared SOX2-regulated gene profiles in multiple SCC cell lines to ES cell profiles and determined that SOX2 binds to distinct genomic loci in SCCs. In SCCs, SOX2 preferentially interacts with the transcription factor p63, as opposed to the transcription factor OCT4, which is the preferred SOX2 binding partner in ES cells. SOX2 and p63 exhibited overlapping genomic occupancy at a large number of loci in SCCs; however, coordinate binding of SOX2 and p63 was absent in ES cells. We further demonstrated that SOX2 and p63 jointly regulate gene expression, including the oncogene ETV4, which was essential for SOX2-amplified SCC cell survival. Together, these findings demonstrate that the action of SOX2 in SCC differs substantially from its role in pluripotency. The identification of the SCC-associated interaction between SOX2 and p63 will enable deeper characterization the downstream targets of this interaction in SCC and normal squamous epithelial physiology.
    The Journal of clinical investigation 03/2014; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.
    Journal of the American Society for Mass Spectrometry 02/2014; · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-grade serous ovarian carcinoma (HGSOC) and basal-like breast cancer (BLBC) share many features including TP53 mutations, genomic instability and poor prognosis. We recently reported that Elafin is overexpressed by HGSOC and is associated with poor overall survival. Here, we confirm that Elafin overexpression is associated with shorter survival in 1000 HGSOC patients. Elafin confers a proliferative advantage to tumor cells through the activation of the MAP kinase pathway. This mitogenic effect can be neutralized by RNA interference, specific antibodies and a MEK inhibitor. Elafin expression in patient-derived samples was also associated with chemoresistance and strongly correlates with bcl-xL expression. We extended these findings into the examination of 1100 primary breast tumors and six breast cancer cell lines. We observed that Elafin is overexpressed and secreted specifically by BLBC tumors and cell lines, leading to a similar mitogenic effect through activation of the MAP kinase pathway. Here too, Elafin overexpression is associated with poor overall survival, suggesting that it may serve as a biomarker and therapeutic target in this setting.Oncogene advance online publication, 27 January 2014; doi:10.1038/onc.2013.562.
    Oncogene 01/2014; · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the synthesis of a GDP analogue, SML-8-73-1, and a prodrug derivative, SML-10-70-1, which are selective, direct-acting covalent inhibitors of the K-Ras G12C mutant relative to wild-type Ras. Biochemical and biophysical measurements suggest that modification of K-Ras with SML-8-73-1 renders the protein in an inactive state. These first-in-class covalent K-Ras inhibitors demonstrate that irreversible targeting of the K-Ras guanine-nucleotide binding site is potentially a viable therapeutic strategy for inhibition of Ras signaling.
    Angewandte Chemie International Edition 11/2013; · 11.34 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The V617F mutation in the Jak2 pseudokinase domain causes myeloproliferative neoplasms, and the equivalent mutation in Jak1 (V658F) is found in T-cell leukemias. Crystal structures of wild-type and V658F-mutant human Jak1 pseudokinase reveal a conformational switch that remodels a linker segment encoded by exon 12, which is also a site of mutations in Jak2. This switch is required for V617F-mediated Jak2 activation and possibly for physiologic Jak activation.
    Nature Structural & Molecular Biology 09/2013; · 11.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in chemistry and massively parallel detection underlie DNA-sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides and true nanoflow liquid chromatography-tandem mass spectrometry that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation.
    Nature Communications 07/2013; 4:2171. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Notch signaling makes critical contributions to cell fate determination in all metazoan organisms, yet remarkably little is known about the binding affinity of the four mammalian Notch receptors for their three Delta-like and two Jagged-family ligands. Here, we utilized signaling assays and biochemical studies of purified recombinant ligand and receptor molecules to investigate the differences in signaling behavior and intrinsic affinity between Notch1-Dll1 and Notch1-Dll4 complexes. Systematic deletion mutagenesis of the human Notch1 ectodomain revealed that EGF repeats 6-15 are sufficient to maintain signaling in a reporter assay at levels comparable to the full-length receptor, and identified important contributions from EGF repeats 8-10 in conveying an activating signal in response to either Dll1 or Dll4. Truncation studies of the Dll1 and Dll4 ectodomains showed that the region encompassing the MNNL-EGF 3 region was both necessary and sufficient for full activation. Plate-based and cell binding assays revealed a specific, calcium-dependent interaction between cell-surface and recombinant Notch receptors and ligand molecules. Finally, direct measurement of the binding affinity of Notch1 EGFs 6-15 for Dll1 and Dll4 revealed that Dll4 binds with at least an order of magnitude higher affinity than that of Dll1. Together, these studies give new insights into the features of ligand recognition by Notch1, and highlight how intrinsic differences in the biochemical behavior of receptor-ligand complexes can influence receptor-mediated responses of developmental signaling pathways.
    Journal of Biological Chemistry 07/2013; · 4.65 Impact Factor
  • Source
    Micha Mandel, Manor Askenazi, Yi Zhang, Jarrod A. Marto
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes and compares two methods for estimating the variance function associated with iTRAQ (isobaric tag for relative and absolute quantitation) isotopic labeling in quantitative mass spectrometry based proteomics. Measurements generated by the mass spectrometer are proportional to the concentration of peptides present in the biological sample. However, the iTRAQ reporter signals are subject to errors that depend on the peptide amounts. The variance function of the errors is therefore an essential parameter for evaluating the results, but estimating it is complicated, as the number of nuisance parameters increases with sample size while the number of replicates for each peptide remains small. Two experiments that were conducted with the sole goal of estimating the variance function and its stability over time are analyzed, and the resulting estimated variance function is used to analyze an experiment targeting aberrant signaling cascades in cells harboring distinct oncogenic mutations. Methods for constructing conservative $p$-values and confidence intervals are discussed.
    The Annals of Applied Statistics 04/2013; 7(1). · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein associated with neurodegenerative disorders. Here, we identify PQBP1 as an alternative messenger RNA (mRNA) splicing (AS) effector capable of influencing splicing of multiple mRNA targets. PQBP1 is associated with many splicing factors, including the key U2 small nuclear ribonucleoprotein (snRNP) component SF3B1 (subunit 1 of the splicing factor 3B [SF3B] protein complex). Loss of functional PQBP1 reduced SF3B1 substrate mRNA association and led to significant changes in AS patterns. Depletion of PQBP1 in primary mouse neurons reduced dendritic outgrowth and altered AS of mRNAs enriched for functions in neuron projection development. Disease-linked PQBP1 mutants were deficient in splicing factor associations and could not complement neurite outgrowth defects. Our results indicate that PQBP1 can affect the AS of multiple mRNAs and indicate specific affected targets whose splice site determination may contribute to the disease phenotype in PQBP1-linked neurological disorders.
    Genes & development 03/2013; 27(6):615-26. · 12.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of mass spectrometry for characterization of small molecules, nucleotides, and proteins in model organisms as well as primary tissues and clinical samples continues to proliferate at a rapid pace. The complexity and dynamic range of target analytes in biological systems hinders comprehensive analysis and simultaneously drives improvements in instrument hardware and software. As a result, state-of-the-art commercial mass spectrometers are equipped with sophisticated embedded control systems that provide robust acquisition methods accessed through intuitive graphical interfaces. Although optimized for speed, these pre-configured scan functions are otherwise closed to end-user customization beyond simple, analytical-centric parameters supplied by the manufacturer. Here we present an open-source framework (mzAPI/Live) that enables users to generate arbitrarily complex LC-MSn acquisition methods via simple Python scripting. As a powerful proof-of-concept we demonstrate real-time assignment of tandem mass spectra through rapid query of NIST peptide libraries. This represents an unprecedented capability to make acquisition decisions based on knowledge of analyte structures determined during the run itself, thus providing a path toward biology-driven mass spectrometry data acquisition for the broader community.
    Proteomics 03/2013; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ε (IKKε) but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents.
    Cell Reports 02/2013; · 7.21 Impact Factor

Publication Stats

2k Citations
686.54 Total Impact Points


  • 2008–2014
    • Dana-Farber Cancer Institute
      • Department of Cancer Biology
      Boston, Massachusetts, United States
  • 2011–2012
    • Harvard Medical School
      • Department of Biological Chemistry and Molecular Pharmacology
      Boston, MA, United States
  • 2009–2012
    • Boston University
      • Department of Biology
      Boston, Massachusetts, United States
    • Hebrew University of Jerusalem
      • Department of Biological Chemistry
      Yerushalayim, Jerusalem District, Israel
  • 1998–2003
    • University of Virginia
      • • Microbiology, Immunology and Cancer Biology (MIC)
      • • Department of Chemistry
      Charlottesville, VA, United States
  • 1995–1998
    • Florida State University
      • Department of Chemistry and Biochemistry
      Tallahassee, FL, United States
  • 1994–1995
    • The Ohio State University
      • Department of Chemistry and Biochemistry
      Columbus, OH, United States