Yoshitaka Sekido

Aichi Cancer Center, Ōsaka, Ōsaka, Japan

Are you Yoshitaka Sekido?

Claim your profile

Publications (155)821.05 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) often provide dramatic responses in lung cancer patients with somatic EGFR mutation. However, acquired resistance to the drugs usually emerges within a few years. EGFR T790M secondary mutation, MET gene amplification, and transformation to small cell lung cancer are well-validated mechanisms that underlie acquisition of resistance to EGFR-TKIs. In addition, many molecular aberrations have been reported as candidates for mechanisms of acquired resistance to EGFR-TKIs. Amplification of the CRKL gene was reportedly observed in 1 of 11 lung cancer patients with EGFR mutations who acquired resistance to EGFR-TKI. This study is the first report, to our knowledge, that validated the role of CRKL gene amplification as a mechanism for acquisition of resistance to EGFR-TKIs.
    Lung cancer (Amsterdam, Netherlands) 06/2014; · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis. Although microRNA (miRNA) transcripts have a crucial role in carcinogenesis and development, little information is known regarding the aberrant DNA methylation of miRNAs in PDAC. Using methylated DNA immunoprecipitation-chip analysis, we found that miR-615-5p was hypermethylated in its putative promoter region, which silenced its expression in PDAC cell lines. In addition, the overexpression of miR-615-5p in pancreatic cancer cells suppressed cell proliferation, migration and invasion. Insulin-like growth factor 2 (IGF2) is an imprinted gene, and its abnormal expression contributes to tumor growth. Here, we identified IGF2 as a target of miR-615-5p using a luciferase reporter assay. IGF2 upregulation in PDAC tissues was not correlated with a loss of imprinting but was inversely correlated with miR-615-5p downregulation. In addition, miR-615-5p suppressed pancreatic cancer cell proliferation, migration and invasion by directly targeting IGF2, and this effect could be reversed by co-transfection with IGF2. Furthermore, the stable overexpression of miR-615-5p inhibited tumor growth in vivo and was correlated with IGF2 expression. Using RNA sequencing, we further identified miR-615-5p as potentially targeting other genes, such as the proto-oncogene JUNB, and interfering with the insulin signaling pathway. Taken together, our results demonstrate that miR-615-5p was abnormally downregulated in PDAC cells due to promoter hypermethylation, which limited its inhibition of IGF2 and other target genes, thereby contributing to tumor growth, invasion and migration. These data demonstrate a novel and important role of miR-615-5p as a tumor suppressor in PDAC.Oncogene advance online publication, 28 April 2014; doi:10.1038/onc.2014.101.
    Oncogene 04/2014; · 7.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The condensin complex is required for chromosome condensation during mitosis; however, the role of this complex during interphase is unclear. Neuroblastoma is the most common extracranial solid tumor of childhood, and it is often lethal. In human neuroblastoma, MYCN gene amplification is correlated with poor prognosis. This study demonstrates that the gene encoding the condensin complex subunit SMC2 is transcriptionally regulated by MYCN. SMC2 also transcriptionally regulates DNA damage response genes in cooperation with MYCN. Downregulation of SMC2 induced DNA damage and showed a synergistic lethal response in MYCN-amplified/overexpression cells, leading to apoptosis in human neuroblastoma cells. Finally, this study found that patients bearing MYCN-amplified tumors showed improved survival when SMC2 expression was low. These results identify novel functions of SMC2 in DNA damage response, and we propose that SMC2 (or the condensin complex) is a novel molecular target for the treatment of MYCN-amplified neuroblastoma.
    Cell cycle (Georgetown, Tex.) 02/2014; 13(7). · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) often provide dramatic responses in lung cancer patients with somatic EGFR mutation. However, acquired resistance to the drugs usually emerges within a few years. EGFR T790 M secondary mutation, MET gene amplification, and transformation to small cell lung cancer are well-validated mechanisms that underlie acquisition of resistance to EGFR-TKIs. In addition, many molecular aberrations have been reported as candidates for mechanisms of acquired resistance to EGFR-TKIs. Amplification of the CRKL gene was reportedly observed in 1 of 11 lung cancer patients with EGFR mutations who acquired resistance to EGFR-TKI. This study is the first report, to our knowledge, that validated the role of CRKL gene amplification as a mechanism for acquisition of resistance to EGFR-TKIs. Materials and Methods We analyzed CRKL gene copy numbers, using a quantitative real-time PCR method, in 2 in vitro acquired-resistance cell-line models: 11 clinical samples from patients who developed acquired resistance to EGFR-TKIs, and 39 tumor specimens obtained from 7 autopsy patients whose cancers acquired resistance to EGFR-TKIs. Mutational status of EGFR codon 790 and copy numbers for the MET gene were also determined. Results and Conclusion In analysis for in vitro models, CRKL gene copy numbers were identical between EGFR-TKI-sensitive parental cells and their acquired resistant descendant cells. In addition, we found no clinical tumor specimens with acquired EGFR-TKI resistance to harbor amplified CRKL genes. These results indicate that CRKL gene amplification is rare in acquisition of resistance to EGFR-TKIs in lung cancer patients with EGFR mutations.
    Lung Cancer. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant mesothelioma (MM) is one of the most aggressive neoplasms usually associated with asbestos exposure and is highly refractory to current therapeutic modalities. MMs show frequent activation of a transcriptional coactivator Yes-associated protein (YAP), which is attributed to the neurofibromatosis type 2 (NF2)-Hippo pathway dysfunction, leading to deregulated cell proliferation and acquisition of a malignant phenotype. However, the whole mechanism of disordered YAP activation in MMs has not yet been well clarified. In the present study, we investigated various components of the NF2-Hippo pathway, and eventually found that MM cells frequently showed downregulation of LIM-domain protein AJUBA, a binding partner of large tumor suppressor type 2 (LATS2), which is one of the last-step kinases of the NF2-Hippo pathway. Although loss of AJUBA expression was independent of the alteration status of other Hippo pathway components, MM cell lines with AJUBA inactivation showed a more dephosphorylated (activated) level of YAP. Immunohistochemical analysis showed frequent downregulation of AJUBA in primary MMs, which was associated with YAP constitutive activation. We found that AJUBA transduction into MM cells significantly suppressed promoter activities of YAP-target genes, and the suppression of YAP activity by AJUBA was remarkably canceled by knockdown of LATS2. In connection with these results, transduction of AJUBA-expressing lentivirus significantly inhibited the proliferation and anchorage-independent growth of the MM cells that harbored ordinary LATS family expression. Taken together, our findings indicate that AJUBA negatively regulates YAP activity through the LATS family, and inactivation of AJUBA is a novel key mechanism in MM cell proliferation.Oncogene advance online publication, 16 December 2013; doi:10.1038/onc.2013.528.
    Oncogene 12/2013; · 7.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ras-Association Family1A (RASSF1A) is a well-established tumor suppressor. Ten RASSF homologues comprise this family, and each member is considered a tumor suppressor. RASSF3 is one of the RASSF family members, but its function has not yet been clarified. Recently, we found that RASSF3 interacts with MDM2 and facilitates its ubiquitination, which induces apoptosis through p53 stabilization. However, the role of RASSF3 in human malignancies remains largely unknown. Ninety-five non-small cell lung cancer (NSCLC) patients from Nagoya University Hospital and 45 NSCLC patients from Aichi Cancer Center Hospital underwent pulmonary resection at each hospital, and lung cancer and corresponding non-cancerous lung tissues were collected. The expression levels of RASSF3 were analyzed using quantitative real-time reverse transcription PCR. We performed statistical analysis to investigate the correlation with RASSF3 expression and the clinicopathological characteristics. We also transfected RASSF3-siRNA into NSCLC cells, and performed motility assays to evaluate the influence on migration ability. RASSF3 expression levels were downregulated in 125 of a total 140 NSCLCs. In a multivariate logistic regression analysis, the low RASSF3 expression group below the median value was independently correlated with progressive phenotypes (lymph node metastasis and pleural invasion), non-adenocarcinoma histology and wild-type epidermal growth factor receptor (EGFR) status. In motility assays, RASSF3-knockdown NSCLC cells increased the migration rate compared to the control cells. We found that the expression levels of RASSF3 were frequently downregulated in NSCLCs. Downregulation of RASSF3 strongly correlated with the progressive phenotypes of NSCLCs and EGFR wild-type status. In vitro studies also suggested that RASSF3 downregulation increases migration ability of lung cancer cells. Together, our findings indicate RASSF3 is a candidate tumor suppressor gene of NSCLCs.
    Lung cancer (Amsterdam, Netherlands) 10/2013; · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas (HCCs). Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells following hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (uPA/SCID mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV; liver tissues were collected and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of HCC and adjacent non-tumor liver tissues from patients. No reproducible changes in DNA methylation were observed following infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected uPA/SCID mice. There were changes in 160±63 genes in HBV-infected and 237±110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in HCC samples from patients, compared with non-tumor tissues. Expression of Ifng, which is expressed by natural killer (NK) cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced following administration of an inhibitor of NK cell function (anti-asialo GM1). In chimeric mice with humanized livers, infection with HBV and HCV appear to activate an NK cell-dependent innate immune response. This contributes to the induction and accumulation of aberrant DNA methylation in human hepatocytes.
    Gastroenterology 10/2013; · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Like many other human cancers, the development of malignant mesothelioma is closely associated with a chronic inflammatory condition. Both macrophages and mesothelial cells play crucial roles in the inflammatory response caused by asbestos exposure. Here, we show that adipocytes can also contribute to asbestos-induced inflammation through dysregulated adipocytokine production. 3T3-L1 preadipocytes were differentiated into mature adipocytes prior to use. These cells took up asbestos fibers (chrysotile, crocidolite and amosite) but were more resistant to asbestos-induced injury than macrophages and mesothelial cells. Expression microarray analysis followed by reverse-transcription PCR revealed that adipocytes respond directly to asbestos exposure with an increased production of pro-inflammatory adipocytokines (e.g. MCP-1) while the production of anti-inflammatory adipocytokines (e.g. adiponectin) is suppressed. This was confirmed in epididymal fat pad of mice after intraperitoneal injection of asbestos fibers. Such dysregulated adipocytokine production favors the establishment of a pro-inflammatory environment. Furthermore, MCP-1 marginally promoted the growth of MeT-5A mesothelial cells and significantly enhanced the wound healing of Y-MESO-8A and Y-MESO-8D human mesothelioma cells. Our results suggest that increased levels of adipocytokines, such as MCP-1, can potentially contribute to the promotion of mesothelial carcinogenesis through the enhanced recruitment of inflammatory cells as well as a direct growth and migration stimulatory effect on mesothelial and mesothelioma cells. Taken together, our findings support a potential cancer-promoting role of adipocytes in asbestos-induced mesothelial carcinogenesis.
    Carcinogenesis 08/2013; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cell plasticity contributes to functional and morphological heterogeneity. To uncover the underlying mechanisms of this plasticity, we examined glioma stem-like cells (GSC) where we found that the biological interconversion between GSCs and differentiated non-GSCs is functionally plastic and accompanied by gain or loss of PRC2, a complex that modifies chromatin structure. PRC2 mediates lysine 27 trimethylation on histone H3 and in GSC it affected pluripotency or development associated genes (e.g. Nanog, Wnt1, BMP5) together with alterations in the subcellular localization of EZH2, a catalytic component of PRC2. Intriguingly, exogenous expression of EZH2-dNLS, which lacks nuclear localization sequence, impaired the repression of Nanog expression under differentiation conditions. RNAi-mediated attenuation or pharmacological inhibition of EZH2 had little to no effect on apoptosis or BrdU incorporation in GSCs, but it disrupted morphological interconversion and impaired GSC integration into the brain tissue, thereby improving survival of GSC-bearing mice. Pathological analysis of human glioma specimens revealed that the number of tumor cells with nuclear EZH2 is larger around tumor vessels and the invasive front, suggesting that nuclear EZH2 may help reprogram tumor cells in close proximity to this microenvironment. Our results indicate that epigenetic regulation by PRC2 is a key mediator of tumor cell plasticity, which is required for the adaptation of glioblastoma cells to their microenvironment. Thus, PRC2-targeted therapy may reduce tumor cell plasticity and tumor heterogeneity, offering a new paradigm for glioma treatment.
    Cancer Research 05/2013; · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin (Aggrus), which is a type I transmembrane sialomucin-like glycoprotein, is highly expressed in malignant pleural mesothelioma (MPM). We previously reported the generation of a rat anti-human podoplanin Ab, NZ-1, which inhibited podoplanin-induced platelet aggregation and hematogenous metastasis. In this study, we examined the antitumor effector functions of NZ-1 and NZ-8, a novel rat-human chimeric Ab generated from NZ-1 including Ab-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against MPM in vitro and in vivo. Immunostaining with NZ-1 showed the expression of podoplanin in 73% (11 out of 15) of MPM cell lines and 92% (33 out of 36) of malignant mesothelioma tissues. NZ-1 could induce potent ADCC against podoplanin-positive MPM cells mediated by rat NK (CD161a(+)) cells, but not murine splenocytes or human mononuclear cells. Treatment with NZ-1 significantly reduced the growth of s.c. established tumors of MPM cells (ACC-MESO-4 or podoplanin-transfected MSTO-211H) in SCID mice, only when NZ-1 was administered with rat NK cells. In in vivo imaging, NZ-1 efficiently accumulated to xenograft of MPM, and its accumulation continued for 3 wk after systemic administration. Furthermore, NZ-8 preferentially recognized podoplanin expressing in MPM, but not in normal tissues. NZ-8 could induce higher ADCC mediated by human NK cells and complement-dependent cytotoxicity as compared with NZ-1. Treatment with NZ-8 and human NK cells significantly inhibited the growth of MPM cells in vivo. These results strongly suggest that targeting therapy to podoplanin with therapeutic Abs (i.e., NZ-8) derived from NZ-1 might be useful as a novel immunotherapy against MPM.
    The Journal of Immunology 05/2013; · 5.52 Impact Factor
  • Yoshitaka Sekido
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant mesothelioma (MM) is an aggressive tumor arising primarily from the pleural or peritoneal cavities. It develops by asbestos exposure after a long latency, which is characterized by insidious growth and clinical presentation at an advanced stage of disease. MM is highly refractory to conventional therapies even with a combination of aggressive surgical intervention and multimodality strategies, with cure remaining elusive. Molecular genetic analysis has revealed several key genetic alterations which are responsible for the development and progression of MM. The CDKN2A/ ARF, NF2, and BAP1 genes are the most frequently mutated tumor suppressor genes detected in MM cells; the alterations of the latter two are relatively characteristic of MM. Merlin, which is encoded by NF2, regulates multiple cell signaling cascades including the Hippo and mTOR pathways which regulate cell proliferation and growth. BAP1 is involved in histone modification and its inactivation induces the disturbance of global gene expression profiling. The discovery of a new familial cancer syndrome with germline mutation of BAP1 also indicates the importance of genetic factors in MM susceptibility. Meanwhile, although frequent expression and functional activations of oncogene products such as receptor tyrosine kinases are observed in MM cells, activating mutations of these genes are rare. With further comprehensive genome analyses, new genetic and epigenetic alterations in MM cells are expected to be revealed more precisely, and the new knowledge based on them will be applied for developing new diagnostic tools and new target therapies against MMs.
    Carcinogenesis 05/2013; · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. We studied whether a green tea polyphenol, epigallocathechin-3-gallate (EGCG), could induce cell death in five human mesothelioma cell lines. We found that EGCG induced apoptosis in all five mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism. EGCG induced reactive oxygen species (ROS), and impaired the mitochondrial membrane potential. As treatment with ROS scavengers, catalase and tempol, significantly inhibited the EGCG-induced apoptosis, ROS is considered to be responsible for the EGCG-induced apoptosis. Further, we found that EGCG induced autophagy, and that when autophagy was suppressed by chloroquine, the EGCG-induced cell death was enhanced. Taken together, these results suggest that EGCG has a great potential for the treatment of mesothelioma by inducing apoptosis and autophagy.
    Cancer Cell International 02/2013; 13(1):19. · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BIM (BCL2L11) is a BH3-only pro-apoptotic member of the Bcl-2 protein family. BIM upregulation is required for apoptosis induction by EGFR tyrosine kinase inhibitors (EGFR-TKIs) in EGFR-mutant forms of non-small cell lung cancer (NSCLC). Notably, a BIM deletion polymorphism occurs naturally in 12.9% of East Asian individuals, impairing the generation of the pro-apoptotic isoform required for the EGFR-TKIs gefitinib and erlotinib and therefore conferring an inherent drug resistant phenotype. Indeed, NSCLC patients who harbored this host BIM polymorphism exhibited significantly inferior responses to EGFR-TKI treatment than individuals lacking this polymorphism. In attempt to correct this response defect in the resistant group, we investigated whether the histone deacetylase (HDAC) inhibitor vorinostat could circumvent EGFR-TKI resistance in EGFR mutant NSCLC cell lines that also harbored the BIM polymorphism. Consistent with our clinical observations, we found that such cells were much less sensitive to gefitinib-induced apoptosis than EGFR mutant cells which did not harbor the polymorphism. Notably, vorinostat increased expression in a dose-dependent manner of the pro-apoptotic BH3 domain-containing isoform of BIM, which was sufficient to restore gefitinib death sensitivity in the EGFR mutant, EGFR-TKI resistant cells. In xenograft models, while gefitinib induced marked regression, via apoptosis, of tumors without the BIM polymorphism, its combination with vorinostat was needed to induce marked regression of tumors with the BIM polymorphism in the same manner. Together, our results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI, in cases of EGFR mutant NSCLC where resistance to EGFR-TKI is associated with a common BIM polymorphism.
    Cancer Research 02/2013; · 8.65 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3K (phosphoinositide 3-kinase)/PDK1 (3-phosphoinositide-dependent protein kinase)/Akt that determines receptor signal selectivity for non-mutated EGFR, and assessed its role in EGFR mutant lung cancer with or without gatekeeper T790M mutation. Cell line-based assays showed that Aki1 constitutively associates with mutant EGFR in lung cancer cells with (H1975) or without (PC-9 and HCC827) T790M gatekeeper mutation. Silencing of Aki1 induced apoptosis of EGFR mutant lung cancer cells. Treatment with Aki1 siRNA dramatically inhibited growth of H1975 cells in a xenograft model. Moreover, silencing of Aki1 further potentiated growth inhibitory effect of new generation EGFR-TKIs against H1975 cells in vitro. Aki1 was frequently expressed in tumor cells of EGFR mutant lung cancer patients (53/56 cases), including those with acquired resistance to EGFR-TKI treatment (7/7 cases). Our data suggest that Aki1 may be a critical mediator of survival signaling from mutant EGFR to Akt, and may therefore be an ideal target for EGFR mutant lung cancer patients, especially those with acquired EGFR-TKI resistance due to EGFR T790M gatekeeper mutation.Oncogene advance online publication, 8 October 2012; doi:10.1038/onc.2012.446.
    Oncogene 10/2012; · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Activated leukocyte cell adhesion molecule (ALCAM) has been shown to correlate with the prognosis of patients with various types of human malignancies. However, the relationship between ALCAM expression and progression of non-small-cell lung cancer (NSCLC) has not been investigated. This study was designed to clarify the prognostic impact of ALCAM expression of NSCLC cells. MATERIALS AND METHODS: The study population consisted of 147 NSCLC patients who underwent complete resection. We performed immunohistochemical staining for ALCAM expression and correlated this to the clinicopathologic parameters and patient survival. The ALCAM expression in NSCLC cell lines was analyzed using quantitative reverse transcription-polymerase chain reaction and Western blot analyses. ALCAM knockdown in NSCLC cell lines was performed with lentivirus-mediated short hairpin RNA transduction. RESULTS: Positive membranous and cytoplasmic ALCAM expressions were detected in 66 (44.9%) and 57 (38.8%) patients, respectively. A significant association of high membranous ALCAM expression with shortened overall survival (OS) was found (P = 0.009). However, patients with cytoplasmic staining of ALCAM showed no significantly shortened OS (P = 0.723). Multivariate analyses showed that membranous expression was adverse prognostic factors for OS (hazard ratio, 2.11; P = 0.046). ALCAM knockdown with short hairpin RNA suppressed cell migration and invasion of NSCLC cell lines in vitro. CONCLUSIONS: Strong membranous ALCAM expression is associated with a poor prognosis in patients with resected NSCLC, and overexpression of ALCAM causes malignant phenotypes of NSCLC.
    Journal of Surgical Research 09/2012; · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC) after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis. Copyright: ß 2012 Akatsuka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This study was supported by Princess Takamatsu Cancer Research Fund (10-24213); a Grant-in-Aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan; and a Grant-in Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 08/2012; · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant mesothelioma (MM) is a neoplasm that arises from serosal surfaces of the pleural, peritoneal and pericardial cavities with worldwide incidence, much of which is caused by asbestos exposure. Patients suffer from pain and dyspnea due to direct invasion of the chest wall, lungs and vertebral or intercostal nerves by masses of thick fibrotic tumors. Although there has been recent progress in the clinical treatment, current therapeutic approaches do not provide satisfactory results. Therefore, development of a molecularly targeted therapy for MM is urgently required. Our recent studies suggest that normal mesothelial and MM cell growth is promoted by TGFβ, and that TGFβ signaling together with intrinsic disturbances in neurofibromatosis type 2 (NF2) and Hippo signaling cascades in MM cells converges upon further expression of connective tissue growth factor (CTGF). The formation of a YAP-TEAD4-Smad3-p300 complex on the specific CTGF promoter site with an adjacent TEAD and Smad binding motif is a critical and synergistic event caused by the dysregulation of these two distinct cascades. Furthermore, we demonstrated the functional importance of CTGF through the mouse studies and human histological analyses, which may elucidate the clinical features of MM with severe fibrosis in the thoracic cavity.
    Cell cycle (Georgetown, Tex.) 08/2012; 11(18):3373-9. · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the EGF receptor tyrosine kinase inhibitors (EGFR-TKI) erlotinib and gefitinib have shown dramatic effects against EGFR mutant lung cancer, patients become resistant by various mechanisms, including gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression, thereafter relapsing. Thus, it is urgent to develop novel agents to overcome EGFR-TKI resistance. We have tested the effects of the mutant-selective EGFR-TKI WZ4002 and the mutant-selective Met-TKI E7050 on 3 EGFR mutant lung cancer cell lines resistant to erlotinib by different mechanisms: PC-9/HGF cells with an exon 19 deletion, H1975 with an L858R mutation, and HCC827ER with an exon 19 deletion, with acquired resistance to erlotinib because of HGF gene transfection, gatekeeper T790M mutation, and Met amplification, respectively. WZ4002 inhibited the growth of H1975 cells with a gatekeeper T790M mutation, but did not inhibit the growth of HCC827ER and PC-9/HGF cells. HGF triggered the resistance of H1975 cells to WZ4002, whereas E7050 sensitized HCC827ER, PC-9/HGF, and HGF-treated H1975 cells to WZ4002, inhibiting EGFR and Met phosphorylation and their downstream molecules. Combined treatment potently inhibited the growth of tumors induced in severe-combined immunodeficient mice by H1975, HCC827ER, and PC-9/HGF cells, without any marked adverse events. These therapeutic effects were associated with the inhibition of EGFR and Met phosphorylation in vivo. The combination of a mutant-selective EGFR-TKI and a Met-TKI was effective in suppressing the growth of erlotinib-resistant tumors caused by gatekeeper T790M mutation, Met amplification, and HGF overexpression. Further evaluations in clinical trials are warranted. Mol Cancer Ther; 11(10); 2149-57. ©2012 AACR.
    Molecular Cancer Therapeutics 07/2012; 11(10):2149-57. · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastomas show heterogeneous histological features, and tumor cells show distinct phenotypic states that confer different functional attributes and an aggressive character. However, the molecular mechanisms underlying the heterogeneity in this disease are poorly understood. Glioma stem-like cells (GSCs) are considered able to aberrantly differentiate into diverse cell types and may contribute to the establishment of tumor heterogeneity. Using a GSC model, we investigated differentially expressed microRNAs (miRNAs) and associated epigenetic mechanisms that regulate the differentiation of GSCs. miRNA profiling using microarray technology showed that 13 and 34 miRNAs were commonly up-regulated and down-regulated in two independent GSC lines during differentiation, respectively. Among this set of miRNAs, quantitative PCR analysis showed that miRNA-1275 (miR-1275) was consistently down-regulated during GSC differentiation, along with the up-regulation of its target, CLDN11, an important protein during oligodendroglial lineage differentiation. Inhibition of miR-1275 with a specific antisense oligonucleotide (anti-miR-1275) in GSCs increased the expression of CLDN11, together with significant growth suppression. Epigenetic analysis revealed that gain of histone H3 lysine 27 trimethylation (H3K27me3) in the primary microRNA-1275 promoter was closely associated with miR-1275 expression. Treatment with 3-deazaneplanocin A, an inhibitor of H3K27 methyltransferase, attenuated CLDN11 induction by serum stimulation in parallel with sustained miR-1275 expression. Our results have illuminated the epigenetic regulatory pathways of miR-1275 that are closely associated with oligodendroglial differentiation, which may contribute to the tissue heterogeneity seen in the formation of glioblastomas. Given that inhibition of miR-1275 induces expression of oligodendroglial lineage proteins and suppresses tumor cell proliferation, this may be a potential therapeutic target for glioblastomas.
    Journal of Biological Chemistry 06/2012; 287(33):27396-406. · 4.65 Impact Factor

Publication Stats

6k Citations
821.05 Total Impact Points

Top Journals

Institutions

  • 1993–2014
    • Aichi Cancer Center
      Ōsaka, Ōsaka, Japan
  • 2009–2013
    • Kanazawa University
      • Division of Medical Oncology
      Kanazawa, Ishikawa, Japan
  • 2000–2013
    • Nagoya University
      • • Department of Preventive Medicine
      • • Division of of Internal Medicine
      • • Division of Pediatrics
      Nagoya, Aichi, Japan
  • 2009–2012
    • National Institute of Advanced Industrial Science and Technology
      • Biomedicinal Information Research Center
      Japan
  • 2003
    • The Prince Charles Hospital (Queensland Health)
      Brisbane, Queensland, Australia
  • 2002
    • Osaka City University
      • Graduate School of Medicine
      Ōsaka-shi, Osaka-fu, Japan
  • 1994–2001
    • University of Texas Southwestern Medical Center
      • • Hamon Center for Therapeutic Oncology Research
      • • Department of Internal Medicine
      • • Simmons Comprehensive Cancer Center
      Dallas, TX, United States
  • 1998–2000
    • University of Texas at Dallas
      Richardson, Texas, United States