Shinsuke Itoh

Osaka City University, Ōsaka, Ōsaka, Japan

Are you Shinsuke Itoh?

Claim your profile

Publications (6)22.92 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules and comprise a family of four members. At the mossy fiber terminals of hippocampus, nectin-1 and nectin-3 localize at the presynaptic and postsynaptic sides of synaptic junctions, respectively, and their trans-interactions play a role in formation of synapses in cooperation with N-cadherin. Nectins are associated with the actin cytoskeleton through afadin, a nectin- and actin-filament-binding protein. Five nectin-like molecules (Necls) which have domain structures similar to those of nectins have been identified and here we characterize Necl-1/TSLL1/SynCAM3, from now on referred to as Necl-1. Tissue distribution analysis showed that Necl-1 was specifically expressed in the neural tissue. Immunofluorescence and immunoelectron microscopy revealed that Necl-1 localized at the contact sites among axons, their terminals, and glia cell processes that cooperatively formed synapses, axon bundles and myelinated axons. Necl-1 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 from now on referred to as Necl-2, nectin-1 and nectin-3, but not with Necl-5 or nectin-2. The C-terminal cytoplasmic region of Necl-1 did not bind afadin but bound membrane-associated guanylate kinase subfamily members that contain the L27 domain, including Dlg3, Pals2 and CASK. These results indicate that Necl-1 is a neural-tissue-specific Ca2+-independent immunoglobulin-like cell-cell adhesion molecule which potentially has membrane-associated guanylate kinase subfamily member-binding activity and localizes at the non-junctional cell-cell contact sites.
    Journal of Cell Science 04/2005; 118(Pt 6):1267-77. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that play roles in organization of a variety of cell-cell junctions in cooperation with or independently of cadherins. Four nectins have been identified. Five nectin-like molecules, which have domain structures similar to those of nectins, have been identified, and we characterized here nectin-like molecule-2 (Necl-2)/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1. Necl-2 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-1/TSLL1/SynCAM3 and nectin-3. Necl-2 was widely expressed in rat tissues examined. Necl-2 localized at the basolateral plasma membrane in epithelial cells of the mouse gall bladder, but not at specialized cell-cell junctions, such as tight junctions, adherens junctions, and desmosomes. Nectins bind afadin, whereas Necl-2 did not bind afadin but bound Pals2, a membrane-associated guanylate kinase family member known to bind Lin-7, implicated in the proper localization of the Let-23 protein in Caenorhabditis elegans, the homologue of mammalian epidermal growth factor receptor. These results indicate the unique localization of Necl-2 and its possible involvement in localization of a transmembrane protein(s) through Pals2.
    Journal of Biological Chemistry 10/2003; 278(37):35421-7. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant transformation of cells causes disruption of cell-cell adhesion, enhancement of cell motility, and invasion into surrounding tissues. Nectins have both homophilic and heterophilic cell-cell adhesion activities and organize adherens junctions in cooperation with cadherins. We examined here whether Tage4, which was originally identified to be a gene overexpressed in colon carcinoma and has a domain structure similar to those of nectins, is involved in cell adhesion and/or migration. Tage4 heterophilically trans-interacted with nectin-3, but not homophilically with Tage4. Expression of Tage4 was markedly elevated in NIH3T3 cells transformed by an oncogenic Ki-Ras (V12Ras-NIH3T3 cells) as compared with that of wild-type NIH3T3 cells. trans-Interaction of Tage4 with nectin-3 enhanced motility of V12Ras-NIH3T3 cells. Tage4 did not bind afadin, a nectin- and actin filament-binding protein that connects nectins to the actin cytoskeleton and cadherins through catenins. Thus, Tage4 heterophilically trans-interacts with nectin-3 and regulates cell migration. Tage4 is tentatively re-named here nectin-like molecule-5 (necl-5) on the basis of its function and domain structure similar to those of nectins.
    Journal of Biological Chemistry 08/2003; 278(30):28167-72. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frabin is an actin filament (F-actin)-binding protein with GDP/GTP exchange activity specific for Cdc42 small G protein. Expression of frabin forms filopodia-like microspikes through the direct activation of Cdc42, and lamellipodia through indirect activation of Rac small G protein. Frabin consists of the F-actin-binding domain (FAB), the Dbl homology domain (DH), the first pleckstrin homology domain (PH1), the FYVE-finger domain (FYVE), the second PH domain (PH2) from the N-terminus in this order. Although DH and PH1 show exchange activity, FAB, in addition to DH and PH1, is required for the formation of microspikes, whereas FYVE and PH2, in addition to DH and PH1, are required for the formation of lamellipodia. Various truncated mutants of frabin were co-expressed with a dominant active mutant (DA) of Cdc42, Rac1DA, or full-length frabin in L fibroblasts. FAB was recruited to the Cdc42DA-formed filopodia-like microspikes. FAB and a fragment containing DH, PH1, FYVE and PH2 were recruited to the Rac1DA-formed membrane ruffles. Furthermore, each of these fragments served as a dominant negative mutant of frabin when co-expressed with full-length frabin, and inhibited the full-length frabin-formed morphological changes. These results suggest that frabin recognizes a specific actin structure(s) through FAB and a specific membrane structure(s) through FAB and the region containing DH, PH1, FYVE and PH2. It is likely that frabin associates with the specific actin and membrane structures and activates Cdc42 and Rac in the vicinity of these structures, eventually leading to morphological changes.
    Genes to Cells 05/2002; 7(4):413-20. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Frabin is an actin filament (F-actin)-binding protein with GDP/GTP exchange activity specific for Cdc42 small G protein. Expression of frabin forms filopodia-like microspikes through the direct activation of Cdc42, and lamellipodia through indirect activation of Rac small G protein. Frabin consists of the F-actin-binding domain (FAB), the Dbl homology domain (DH), the first pleckstrin homology domain (PH1), the FYVE-finger domain (FYVE), the second PH domain (PH2) from the N-terminus in this order. Although DH and PH1 show exchange activity, FAB, in addition to DH and PH1, is required for the formation of microspikes, whereas FYVE and PH2, in addition to DH and PH1, are required for the formation of lamellipodia.Results: Various truncated mutants of frabin were co-expressed with a dominant active mutant (DA) of Cdc42, Rac1DA, or full-length frabin in L fibroblasts. FAB was recruited to the Cdc42DA-formed filopodia-like microspikes. FAB and a fragment containing DH, PH1, FYVE and PH2 were recruited to the Rac1DA-formed membrane ruffles. Furthermore, each of these fragments served as a dominant negative mutant of frabin when co-expressed with full-length frabin, and inhibited the full-length frabin-formed morphological changes.Conclusion: These results suggest that frabin recognizes a specific actin structure(s) through FAB and a specific membrane structure(s) through FAB and the region containing DH, PH1, FYVE and PH2. It is likely that frabin associates with the specific actin and membrane structures and activates Cdc42 and Rac in the vicinity of these structures, eventually leading to morphological changes.
    Genes to Cells 04/2002; 7(4):413 - 420. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frabin is a GDP/GTP exchange protein for Cdc42 small G protein with actin filament-binding activity. Frabin consists of the actin filament-binding domain, the Dbl homology domain, the first pleckstrin homology domain, the FYVE-finger domain, and the second pleckstrin homology domain in this order from the N-terminus. Frabin forms filopodia through direct activation of Cdc42 and lamellipodia through indirect activation of Rac small G protein. We isolated here two smaller splicing variants of frabin and named the original one, middle-size one, and smallest one frabin-alpha, -beta, and -gamma, respectively. Frabin-beta lacked the second pleckstrin homology domain and frabin-gamma lacked the FYVE-finger domain and the second pleckstrin homology domain. These three variants were expressed in all of the tissues examined but their expression levels are different depending on tissues. In L fibroblasts, all the three variants formed filopodia. As to lamellipodia, frabin-alpha formed them; frabin-beta formed them to a small extent; and frabin-gamma did not. In MDCK epithelial cells, frabin-alpha formed microspikes but frabin-beta or -gamma did not.
    Biochemical and Biophysical Research Communications 10/2001; 286(5):1066-72. · 2.28 Impact Factor