Sébastien P Blais

Laval University, Québec, Quebec, Canada

Are you Sébastien P Blais?

Claim your profile

Publications (8)28.3 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Genomic studies revealed the absence of glutaminyl-tRNA synthetase and/or asparaginyl-tRNA synthetase in many bacteria and all known archaea. In these microorganisms, glutaminyl-tRNA(Gln) (Gln-tRNA(Gln)) and/or asparaginyl-tRNA(Asn) (Asn-tRNA(Asn)) are synthesized via an indirect pathway involving side chain amidation of misacylated glutamyl-tRNA(Gln) (Glu-tRNA(Gln)) and/or aspartyl-tRNA(Asn) (Asp-tRNA(Asn)) by an amidotransferase. A series of chloramphenicol analogs have been synthesized and evaluated as inhibitors of Helicobacter pylori GatCAB amidotransferase. Compound 7a was identified as the most active competitive inhibitor of the transamidase activity with respect to Asp-tRNA(Asn) (K(m)=2μM), with a K(i) value of 27μM.
    Bioorganic & medicinal chemistry 10/2010; 18(22):7868-72. · 2.82 Impact Factor
  • Source
    Biochemistry 08/2009; · 3.38 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Faithful translation of the genetic code is mainly based on the specificity of tRNA aminoacylation catalyzed by aminoacyl-tRNA synthetases. These enzymes are comprised of a catalytic core and several appended domains. Bacterial glutamyl-tRNA synthetases (GluRS) contain five structural domains, the two distal ones interacting with the anticodon arm of tRNA(Glu). Thermus thermophilus GluRS requires the presence of tRNA(Glu) to bind ATP in the proper site for glutamate activation. In order to test the role of these two distal domains in this mechanism, we characterized the in vitro properties of the C-truncated Escherichia coli GluRSs N(1-313) and N(1-362), containing domains 1-3 and 1-4, respectively, and of their N-truncated complements GluRSs C(314-471) (containing domains 4 and 5) and C(363-471) (free domain 5). These C-truncated GluRSs are soluble, aminoacylate specifically tRNA(Glu), and require the presence of tRNA(Glu) to catalyze the activation of glutamate, as does full-length GluRS(1-471). The k(cat) of tRNA glutamylation catalyzed by N(1-362) is about 2000-fold lower than that catalyzed by the full-length E. coli GluRS(1-471). The addition of free domain 5 (C(363-471)) to N(1-362) strongly stimulates this k(cat) value, indicating that covalent connectivity between N(1-362) and domain 5 is not required for GluRS activity; the hyperbolic relationship between domain 5 concentration and this stimulation indicates that these proteins and tRNA(Glu) form a productive complex with a K(d) of about 100 microM. The K(d) values of tRNA(Glu) interactions with the full-length GluRS and with the truncated GluRSs N(1-362) and free domain 5 are 0.48, 0.11, and about 1.2 microM, respectively; no interaction was detected between these two complementary truncated GluRSs. These results suggest that in the presence of these truncated GluRSs, tRNA(Glu) is positioned for efficient aminoacylation by the two following steps: first, it interacts with GluRS N(1-362) via its acceptor-TPsiC stem loop domain and then with free domain 5 via its anticodon-Dstem-biloop domain, which appeared later during evolution. On the other hand, tRNA glutamylation catalyzed by N(1-313) is not stimulated by its complement C(314-471), revealing the importance of the covalent connectivity between domains 3 and 4 for GluRS aminoacylation activity. The K(m) values of N(1-313) and N(1-362) for each of their substrates are similar to those of full-length GluRS. These C-truncated GluRSs recognize only tRNA(Glu). These results confirm the modular nature of GluRS and support the model of a "recent" fusion of domains 4 and 5 to a proto-GluRS containing the catalytic domain and able to recognize its tRNA substrate(s).
    Biochemistry 07/2009; 48(25):6012-21. · 3.38 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Distinctive features of aspartyl-transfer RNA (tRNA) synthetases (AspRS) from the protozoan Plasmodium genus are described. These apicomplexan AspRSs contain 29-31 amino acid insertions in their anticodon binding domains, a remarkably long N-terminal appendix that varies in size from 110 to 165 amino acids and two potential initiation codons. This article focuses on the atypical functional and structural properties of Plasmodium falciparum cytosolic AspRS, the causative parasite of human malaria. This species encodes a 626 or 577 amino acids AspRS depending on whether initiation starts on the first or second in-frame initiation codon. The longer protein has poor solubility and a propensity to aggregate. Production of the short version was favored as shown by the comparison of the recombinant protein with endogenous AspRS. Comparison of the tRNA aminoacylation activity of wild-type and mutant parasite AspRSs with those of yeast and human AspRSs revealed unique properties. The N-terminal extension contains a motif that provides unexpectedly strong RNA binding to plasmodial AspRS. Furthermore, experiments demonstrated the requirement of the plasmodial insertion for AspRS dimerization and, therefore, tRNA aminoacylation and other putative functions. Implications for the parasite biology are proposed. These data provide a robust background for unraveling the precise functional properties of the parasite AspRS and for developing novel lead compounds against malaria, targeting its idiosyncratic domains.
    Journal of Biological Chemistry 06/2009; 284(28):18893-903. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Human mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), the enzymes which esterify tRNAs with the cognate specific amino acid, form mainly a different set of proteins than those involved in the cytosolic translation machinery. Many of the mt-aaRSs are of bacterial-type in regard of sequence and modular structural organization. However, the few enzymes investigated so far do have peculiar biochemical and enzymological properties such as decreased solubility, decreased specific activity and enlarged spectra of substrate tRNAs (of same specificity but from various organisms and kingdoms), as compared to bacterial aaRSs. Here the sensitivity of human mitochondrial aspartyl-tRNA synthetase (AspRS) to small substrate analogs (non-hydrolysable adenylates) known as inhibitors of Escherichia coli and Pseudomonas aeruginosa AspRSs is evaluated and compared to the sensitivity of eukaryal cytosolic human and bovine AspRSs. L-aspartol-adenylate (aspartol-AMP) is a competitive inhibitor of aspartylation by mitochondrial as well as cytosolic mammalian AspRSs, with K(i) values in the micromolar range (4-27 microM for human mt- and mammalian cyt-AspRSs). 5'-O-[N-(L-aspartyl)sulfamoyl]adenosine (Asp-AMS) is a 500-fold stronger competitive inhibitor of the mitochondrial enzyme than aspartol-AMP (10nM) and a 35-fold lower competitor of human and bovine cyt-AspRSs (300 nM). The higher sensitivity of human mt-AspRS for both inhibitors as compared to either bacterial or mammalian cytosolic enzymes, is not correlated with clear-cut structural features in the catalytic site as deduced from docking experiments, but may result from dynamic events. In the scope of new antibacterial strategies directed against aaRSs, possible side effects of such drugs on the mitochondrial human aaRSs should thus be considered.
    Biochimie 03/2009; 91(5):596-603. · 3.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The trimeric GatCAB aminoacyl-tRNA amidotransferases catalyze the amidation of Asp-tRNAAsn and/or Glu-tRNAGln to Asn-tRNAAsn and/or Gln-tRNAGln, respectively, in bacteria and archaea lacking an asparaginyl-tRNA synthetase and/or a glutaminyl-tRNA synthetase. The two misacylated tRNA substrates of these amidotransferases are formed by the action of nondiscriminating aspartyl-tRNA synthetases and glutamyl-tRNA synthetases. We report here that the presence of a physiological concentration of a nondiscriminating aspartyl-tRNA synthetase in the transamidation assay decreases the Km of GatCAB for Asp-tRNAAsn. These conditions, which were practical for the testing of potential inhibitors of GatCAB, also allowed us to discover and characterize two novel inhibitors, aspartycin and glutamycin. These analogues of the 3'-ends of Asp-tRNA and Glu-tRNA, respectively, are competitive inhibitors of the transamidase activity of Helicobacter pylori GatCAB with respect to Asp-tRNAAsn, with Ki values of 134 microM and 105 microM, respectively. Although the 3' end of aspartycin is similar to the 3' end of Asp-tRNAAsn, this analogue was neither phosphorylated nor transamidated by GatCAB. These novel inhibitors could be used as lead compounds for designing new types of antibiotics targeting GatCABs, since the indirect pathway for Asn-tRNAAsn or Gln-tRNAGln synthesis catalyzed by these enzymes is not present in eukaryotes and is essential for the survival of the above-mentioned bacteria.
    Biochemistry 12/2007; 46(45):13190-8. · 3.38 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The aminoacyl-beta-ketophosphonate-adenosines (aa-KPA) are stable analogs of the aminoacyl adenylates, which are high-energy intermediates in the formation of aminoacyl-tRNA catalyzed by aminoacyl-tRNA synthetases (aaRS). We have synthesized glutamyl-beta-ketophosphonate-adenosine (Glu-KPA) and glutaminyl-beta-ketophosphonate-adenosine (Gln-KPA), and have tested them as inhibitors of their cognate aaRS, and of a non-cognate aaRS. Glu-KPA is a competitive inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS) with a K(i) of 18microM with respect to its substrate glutamate, and binds at one site on this monomeric enzyme; the non-cognate Gln-KPA also binds this GluRS at one site, but is a much weaker (K(i)=2.9mM) competitive inhibitor. By contrast, Gln-KPA inhibits E. coli glutaminyl-tRNA synthetase (GlnRS) by binding competitively but weakly at two distinct sites on this enzyme (average K(i) of 0.65mM); the non-cognate Glu-KPA shows one-site weak (K(i)=2.8mM) competitive inhibition of GlnRS. These kinetic results indicate that the glutamine and the AMP modules of Gln-KPA, connected by the beta-ketophosphonate linker, cannot bind GlnRS simultaneously, and that one Gln-KPA molecule binds the AMP-binding site of GlnRS through its AMP module, whereas another Gln-KPA molecule binds the glutamine-binding site through its glutamine module. This model suggests that similar structural constraints could affect the binding of Glu-KPA to the active site of mammalian cytoplasmic GluRSs, which are evolutionarily much closer to bacterial GlnRS than to bacterial GluRS. This possibility was confirmed by the fact that Glu-KPA inhibits bovine liver GluRS 145-fold less efficiently than E. coli GluRS by competitive weak binding at two distinct sites (average K(i)=2.6mM). Moreover, these kinetic differences reveal that the active sites of bacterial GluRSs and mammalian cytoplasmic GluRSs have substantial structural differences that could be further exploited for the design of better inhibitors specific for bacterial GluRSs, promising targets for antimicrobial therapy.
    Bioorganic & Medicinal Chemistry 02/2007; 15(1):295-304. · 2.90 Impact Factor
  • François J M Chartier, Sébastien P Blais, Manon Couture
    [show abstract] [hide abstract]
    ABSTRACT: Little is known about the intermediates formed during catalysis by nitric-oxide synthase (NOS). We report here the characterization by resonance Raman spectroscopy of the oxygenated complex of the NOS from Staphylococcus aureus (saNOS) as well as the kinetics of formation and decay of the complex. An oxygenated complex transiently formed after mixing reduced saNOS with oxygen and decayed to the ferric enzyme with kinetics that were dependent on the substrate L-arginine and the cofactor H(4)B. The oxygenated complex displayed a Soret absorption band centered at 430 nm. Resonance Raman spectroscopy revealed that it can be described as a ferric superoxide form (Fe(III)O(2)(-)) with a single nu(O-O) mode at 1135 cm(-1). In the presence of L-arginine, an additional nu(O-O) mode at 1123 cm(-1) was observed, indicating an increased pi back-bonding electron donation to the bound oxygen induced by the substrate. With saNOS, this is the first time that the nu(Fe-O) mode of a NOS has been observed. The low frequency of this mode, at 517 cm(-1), points to an oxygenated complex that differs from that of P450(cam). The electronic structure of the oxygenated complex and the effect of L-arginine are discussed in relation to the kinetic properties of saNOS and other NOS.
    Journal of Biological Chemistry 05/2006; 281(15):9953-62. · 4.65 Impact Factor