F Krempler

Krankenhaus Hallein, Hallein, Salzburg, Austria

Are you F Krempler?

Claim your profile

Publications (81)380.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and diabetes affect more than half a billion individuals worldwide. Interestingly, the two conditions do not always coincide and the molecular determinants of "healthy" versus "unhealthy" obesity remain ill-defined. Chronic metabolic inflammation (metaflammation) is believed to be pivotal. Here, we tested a hypothesized anti-inflammatory role for heme oxygenase-1 (HO-1) in the development of metabolic disease. Surprisingly, in matched biopsies from "healthy" versus insulin-resistant obese subjects we find HO-1 to be among the strongest positive predictors of metabolic disease in humans. We find that hepatocyte and macrophage conditional HO-1 deletion in mice evokes resistance to diet-induced insulin resistance and inflammation, dramatically reducing secondary disease such as steatosis and liver toxicity. Intriguingly, cellular assays show that HO-1 defines prestimulation thresholds for inflammatory skewing and NF-κB amplification in macrophages and for insulin signaling in hepatocytes. These findings identify HO-1 inhibition as a potential therapeutic strategy for metabolic disease.
    Cell 07/2014; 158(1):25-40. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic studies implicated upstream stimulatory factor 1 (USF1) in familial combined hyperlipidemia because the rs2073658 minor allele was associated with reduced risk of familial combined hyperlipidemia and related disorders. The molecular mechanisms whereby rs2073658 influences trait expression have remained elusive. Plasma lipids, rs2073658 genotypes (N=372), and hepatic transcript levels (N=96) of USF1 and genes involved in hepatic lipoprotein production were determined in obese subjects. The rs2073658 minor allele was associated with reduced plasma triglycerides (TGs) (P<0.001), hepatic USF1 (P<0.01), and microsomal TG transfer protein transcript levels (P<0.05). Functional studies in human hepatocellular carcinoma cells showed that rs2073658 is located in a forkhead box A2 (FOXA2) binding site and that major allele constructs displayed higher transcriptional activity than minor allele constructs. Knockdown of FOXA2 reduced the activity of major, but not minor allele constructs. Furthermore, an interaction between hepatic FOXA2 transcript levels and rs2073658 minor allele carrier status on hepatic USF1 transcript levels was observed in vivo (P<0.05). USF1 activated the transcription of FOXA2 and FOXA2 strongly activated the transcription of microsomal TG transfer protein. A feed-forward loop comprising activation of USF1 transcription by FOXA2 and activation of FOXA2 transcription by USF1, driving microsomal TG transfer protein expression, is modulated by rs2073658. Hence, rs2073658 likely influences hepatic TG secretion.
    Arteriosclerosis Thrombosis and Vascular Biology 03/2012; 32(6):1535-44. · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a transcriptional coactivator that contributes to the regulation of numerous transcriptional programs including the hepatic response to fasting. Mechanisms at transcriptional and post-transcriptional levels allow PGC-1α to support distinct biological pathways. Here we describe a novel human liver-specific PGC-1α transcript that results from alternative promoter usage and is induced by FOXO1 as well as glucocorticoids and cAMP-response element-binding protein signaling but is not present in other mammals. Hepatic tissue levels of novel and wild-type transcripts were similar but were only moderately associated (p < 0.003). Novel mRNA levels were associated with a polymorphism located in its promoter region, whereas wild-type transcript levels were not. Furthermore, hepatic PCK1 mRNA levels exhibited stronger associations with the novel than with the wild-type transcript levels. Except for a deletion of 127 amino acids at the N terminus, the protein, termed L-PGC-1α, is identical to PGC-1α. L-PGC-1α was localized in the nucleus and showed coactivation properties that overlap with those of PGC-1α. Collectively, our data support a role of L-PGC-1α in gluconeogenesis, but functional differences predicted from the altered structure suggest that L-PGC-1α may have arisen to adapt PGC-1α to more complex metabolic pathways in humans.
    Journal of Biological Chemistry 12/2011; 286(50):42923-36. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cells and level of the cytokine interferon-γ (IFN-γ) are increased in adipose tissue in obesity. Hedgehog (Hh) signaling has been shown to potently inhibit white adipocyte differentiation. In light of recent findings in neurons that IFN-γ and Hh signaling cross-talk, we examined their potential interaction in the context of adipogenesis. We used Hh reporter cells, cell lines, and primary adipocyte differentiation models to explore costimulation of IFN-γ and Hh signaling. Genetic dissection using Ifngr1(-/-) and Stat1(-/-) mouse embryonic fibroblasts, and ultimately, anti-IFN-γ neutralization and expression profiling in obese mice and humans, respectively, were used to place the findings into the in vivo context. T-cell supernatants directly inhibited hedgehog signaling in reporter and 3T3-L1 cells. Intriguingly, using blocking antibodies, Ifngr1(-/-) and Stat1(-/-) cells, and simultaneous activation of Hh and IFN-γ signaling, we showed that IFN-γ directly suppresses Hh stimulation, thus rescuing adipogenesis. We confirmed our findings using primary mouse and primary human (pre)adipocytes. Importantly, robust opposing signals for Hh and T-cell pathways in obese human adipose expression profiles and IFN-γ depletion in mice identify the system as intact in adipose tissue in vivo. These results identify a novel antagonistic cross-talk between IFN-γ and Hh signaling in white adipose tissue and demonstrate IFN-γ as a potent inhibitor of Hh signaling.
    Diabetes 06/2011; 60(6):1668-76. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HDL modifying effects of cholesteryl ester transfer protein (CETP) and hepatic lipase (LIPC) depend in part on each other. We studied associations of CETP-Taq1B and -514C>T-LIPC polymorphisms with hepatic mRNA levels, and their combined effects on plasma lipids and carotid atherosclerosis. We genotyped the CETP-Taq1B and the -514C>T-LIPC polymorphisms in 67 obese women in whom hepatic CETP and LIPC transcript levels were determined as well as in 1549 participants of the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR). Carotid atherosclerosis was assessed by intima-media thickness and extent of plaques (B-score) of the carotid arteries. In obese women, CETP-Taq1B and -514C>T-LIPC variant alleles were associated with reduced hepatic levels of CETP and LIPC mRNA, respectively. The CETP and LIPC polymorphisms accounted for 12.9 and 14.4% of the variability in respective transcripts. In the SAPHIR population, CETP-Taq1B showed independent effects on LDL diameter, HDL and LDL cholesterol, apolipoproteins AI and B and cholesterol/HDL cholesterol, while -514C>T-LIPC revealed independent effects on HDL cholesterol and apolipoprotein AI. The two polymorphisms displayed interactions at the level of HDL cholesterol. Compared to subjects carrying wild-type alleles at both loci, subjects homozygous for the CETP wild-type allele, but heterozygous for the LIPC polymorphism and subjects heterozygous for the CETP polymorphism, but homozygous for the LIPC wild-type allele showed an increased risk of carotid atherosclerosis (both P<0.05). CETP and LIPC polymorphisms influence the respective hepatic transcript levels, demonstrate interactions on HDL cholesterol and suggest that imbalances between CETP and LIPC activities may modulate the risk of carotid atherosclerosis.
    Atherosclerosis 03/2011; 216(2):374-80. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pivotal role of mitochondria in energy production and free radical generation suggests that the mitochondrial genome could have an important influence on the expression of multifactorial age related diseases. Substitution of T to C at nucleotide position 16189 in the hypervariable D-loop of the control region (CR) of mitochondrial DNA (mtDNA) has attracted research interest because of its suspected association with various multifactorial diseases. The aim of the present study was to compare the frequency of this polymorphism in the CR of mtDNA in patients with coronary artery disease (CAD, n = 482) and type 2 diabetes mellitus (T2DM, n = 505) from two study centers, with healthy individuals (n = 1481) of Middle European descent in Austria. CR polymorphisms and the nine major European haplogroups were identified by DNA sequencing and primer extension analysis, respectively. Frequencies and Odds Ratios for the association between cases and controls were calculated. Compared to healthy controls, the prevalence of T16189C was significantly higher in patients with CAD (11.8% vs 21.6%), as well as in patients with T2DM (11.8% vs 19.4%). The association of CAD, but not the one of T2DM, with T16189C remained highly significant after correction for age, sex and body mass index (BMI) and was independent of the two study centers. Our results show for the first time a significant association of T16189C with CAD in a Middle European population. As reported in other studies, in patients with T2DM an association with T16189C in individuals of European decent remains questionable.
    PLoS ONE 01/2011; 6(1):e16455. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organic anion transporters (OATs) are anion exchangers that transport small hydrophilic anions and diuretics, antibiotics, nonsteroidal anti-inflammatory drugs, antiviral nucleoside analogs, and antitumor drugs across membrane barriers of epithelia of diverse organs. Three OATs are present in human liver: OAT2, OAT5, and OAT7. Given that hepatocyte nuclear factor-1α (HNF-1α) has previously been shown to regulate the expression of several hepatocellular transporter genes, we investigated whether the liver-specific human OAT genes are also regulated by HNF-1α. Short interfering RNAs targeting HNF-1α reduced endogenous expression of OAT5 and OAT7, but not OAT2, in human liver-derived Huh7 cells. Luciferase reporter gene constructs containing the OAT5 (SLC22A10) and OAT7 (SLC22A9) promoter regions were transactivated by HNF-1α in HepG2 cells. Two putative HNF-1α binding elements in the proximal OAT5 promoter, located at nucleotides -68/-56 and -173/-160, and one element in the OAT7 promoter, located at nucleotides -14/-2 relative to the transcription start site, were shown to bind HNF-1α in electromobility shift assays, and these promoter regions also interacted with HNF-1α in chromatin immunoprecipitation assays. A correlation between HNF-1α and OAT5 (r = 0.134, P < 0.05) or OAT7 (r = 0.461, P < 0.001) mRNA expression levels in surgical liver biopsies from 75 patients further supported an important role of HNF-1α in the regulation of OAT gene expression.
    Molecular pharmacology 12/2010; 78(6):1079-87. · 4.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin signalling attenuates insulin resistance (IR) and steatosis hepatis in animal models. As adiponectin receptor (ADIPOR)1 and ADIPOR2 are critical components in the adiponectin signalling cascade, we studied hepatic ADIPOR1/2 mRNA levels in humans and their relation to IR. We determined metabolic risk factors and levels of hepatic mRNA transcribed from ADIPOR1, ADIPOR2 and FOXO1, a putative up-stream regulator, in 43 and 34 obese subjects with low and high homeostasis model assessment-IR, respectively. Plasma adiponectin and metabolic risk factors showed associations with IR as expected. Both hepatic ADIPOR1 and ADIPOR2 mRNA expression levels were higher in insulin-resistant subjects (P<0.0035). ADIPOR1 mRNA correlated with FOXO1 mRNA in obese insulin resistant (P=0.0034), but not insulin-sensitive subjects, while no correlations of ADIPOR2 with FOXO1 mRNA were noted. FOXO1 enhanced transcription from the ADIPOR1, but not the ADIPOR2 promoter in HepG2 cells. Increased hepatic ADIPOR1 and ADIPOR2 mRNA in insulin-resistant obese subjects may, at least in part, reflect a compensatory mechanism for reduced plasma adiponectin. FOXO1 may contribute to enhanced ADIPOR1, but not ADIPOR2 transcription in IR.
    International journal of obesity (2005) 05/2010; 34(5):846-51. · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims/hypothesisThe pseudokinase tribbles homologue 3 (Drosophila) (TRIB3) negatively interferes with insulin-mediated phosphorylation and activation of v-akt murine thymoma viral oncogene homologue 1 (AKT1, also known as protein kinase B). Animal studies have shown that Trib3 expression was higher in the fasting state and in animal models of diabetes, promoting hyperglycaemia presumably by increasing glucose production in the liver. Less is known about the role of TRIB3 in insulin resistance in humans, although a gain-of-function mutation associated with abnormalities related to insulin resistance has been described in TRIB3. MethodsWe determined hepatic mRNA expression of TRIB3 and selected genes encoding enzymes, transcription factors and coactivators involved in glucose homeostasis. We also determined biochemical variables of intermediary metabolism in obese patients with varying degrees of insulin resistance. ResultsIn our study population hepatic TRIB3 mRNA expression was associated with surrogate markers of insulin resistance. TRIB3 expression was significantly increased in a subgroup with high HOMA of insulin resistance (HOMA-IR) compared with a low HOMA-IR group (p = 0.0033). TRIB3 transcript levels were correlated with PEPCK (also known as PCK2) mRNA expression (p = 0.0014) and mRNA expression of PPARGC1A (p = 0.0020), PPARGC1B (p < 0.0001), USF1 (p = 0.0017), FOXO1 (p = 0.0003) and SREBP-1c (also known as SREBF1; p = 0.0360). Furthermore ligands of peroxisome proliferator-activated receptor α/retinoid X receptor and overexpression of its coactivator PPARGC1A as well as overexpression of SREBP-1c and its coactivator PPARGC1B increased TRIB3 promoter activity in HepG2 cells. Conclusions/interpretationWe have found evidence for a role of aberrant hepatic TRIB3 transcript levels in insulin resistance in obese humans and identified potential transcriptional pathways involved in regulation of TRIB3 gene expression in the liver. KeywordsGene expression-Insulin resistance-Transcription-Tribbles 3
    Diabetologia 01/2010; 53(9):1971-1975. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A recent study reported an association between the brain natriuretic peptide (BNP) promoter T-381C polymorphism (rs198389) and protection against type 2 diabetes (T2D). As replication in several studies is mandatory to confirm genetic results, we analyzed the T-381C polymorphism in seven independent case-control cohorts and in 291 T2D-enriched pedigrees totalling 39 557 subjects of European origin. A meta-analysis of the seven case-control studies (n = 39 040) showed a nominal protective effect [odds ratio (OR) = 0.86 (0.79-0.94), P = 0.0006] of the CC genotype on T2D risk, consistent with the previous study. By combining all available data (n = 49 279), we further confirmed a modest contribution of the BNP T-381C polymorphism for protection against T2D [OR = 0.86 (0.80-0.92), P = 1.4 x 10(-5)]. Potential confounders such as gender, age, obesity status or family history were tested in 4335 T2D and 4179 normoglycemic subjects and they had no influence on T2D risk. This study provides further evidence of a modest contribution of the BNP T-381C polymorphism in protection against T2D and illustrates the difficulty of unambiguously proving modest-sized associations even with large sample sizes.
    Human Molecular Genetics 05/2009; 18(13):2495-501. · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor-gamma co-activator-1 (PGC-1) alpha and -beta play pivotal roles in the regulation of intermediary metabolism. We have previously shown that PGC-1alpha-mediated upregulation of beta-cell sterol element binding protein (SREBP) gene expression impairs insulin secretion via increased transcription of uncoupling protein 2 (UCP2). PGC-1beta, in contrast to PGC-1alpha, directly binds to and acts as a co-activator of SREBPs and the forkhead transcription factor 2A (FOXA2) involved in pancreas development and function. To address a possible role of PGC-1beta in beta-cell function, we determined islet gene expression levels of PGC-1alpha, PGC-1beta, SREBPs, FOXA2, FOXO1, UCP2 as well as granuphilin, a critical component of the insulin secretory machinery, in Zucker diabetic fatty rats (ZDF). In comparison to controls, mRNA levels of all genes studied except for FOXA2 and FOXO1 were increased in islets of obese, fa/fa ZDF rats. The transcriptional activities of the UCP2 and granuphilin promoters were assessed in INS-1E cells in response to PGC-1beta overexpression and small interference RNA (siRNA)-mediated gene silencing. PGC-1beta as well as SREBP-1c and -2 increased transcription from the UCP2 promoter in INS-1E cells. Transient transfection of PGC-1beta-specific siRNAs significantly decreased SREBP-2-mediated transcriptional activation of the UCP2 gene. Furthermore PGC-1beta, SREBP-1c, and FOXA2 overexpression augmented granuphilin promoter activity, whereas siRNA-mediated gene knockdown of PGC-1beta reduced the effects of SREBP-1c and FOXA2 on granuphilin gene transcription and significantly increased glucose-stimulated insulin release from INS-1E cells. Our results support a role of PGC-1beta in the regulation of insulin secretion via upregulation of UCP2 and granuphilin gene expression.
    Journal of Molecular Medicine 01/2009; 87(3):299-306. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apolipoprotein A-V (apoAV) contributes to the regulation of triglyceride metabolism, which plays a role in the pathogenesis of atherosclerotic diseases. We therefore ascertained determinants of hepatic APOA5 transcript and apoAV plasma levels in humans. We determined influences of anthropometric variables, biochemical factors related to lipid and glucose metabolism, hepatic mRNA levels transcribed from the APOA1/C3/A4/A5 cluster and transcription factor genes implicated in the regulation of APOA5 as well as common single nucleotide polymorphisms (SNPs) at the APOA5 locus on APOA5 expression in 89 obese patients and 22 non-obese controls. Mean, age and sex adjusted, hepatic APOA5 mRNA or apoAV plasma levels did not differ by obesity status, homoeostasis model assessment insulin resistance or inflammatory markers. In multivariate regression models, the c56C > G SNP, plasma apoCIII, plasma nonesterified fatty acids, hepatic APOA5 transcripts, sex and a weak association with obesity status explained 61% of the variance in apoAV plasma levels. Hepatic transcript levels of carnitine palmitoyltransferase 1 (CPT1A1) and peroxisome proliferator-activated receptor alpha (PPARA), plasma nonesterified fatty acids and the c56C > G SNP explained 48% of the variance in hepatic APOA5 transcript levels. Apolipoprotein A-V plasma levels are independently associated with plasma free fatty acid and hepatic APOA5 mRNA levels. Associations of APOA5 transcripts with PPARA and CPT1A1 transcripts suggest that APOA5 expression is intimately linked to hepatic lipid metabolism.
    Journal of Internal Medicine 07/2008; 264(5):452-62. · 6.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sterol regulatory element-binding protein-1c (SREBP-1c) is a transcription factor involved in the regulation of lipid and glucose metabolism and has been implicated in the pathophysiology of type 2 diabetes mellitus (T2DM). We aimed to confirm associations of the SREBF-1 gene with T2DM in an Austrian population and to study possible associations with diabetes-related quantitative traits. DESIGN, SETTINGS AND PARTICIPANTS: We genotyped a diabetic cohort (n=446) along with a control group (n=1524) for a common C/G variation that is located in exon 18c (rs2297508) and has been associated with obesity and T2DM in French populations. Body mass index (BMI), indices of insulin sensitivity and beta-cell function, plasma adiponectin, T2DM and single-nucleotide polymorphism rs2297508. Genotype distributions associated with rs2297508 differed by T2DM status (P=0.0045), but not by BMI. The variant G allele was associated with a modest, but significant, increase in the prevalence of T2DM after adjustment for age, sex and BMI (G/G: odds ratios (OR) (95% confidence intervals)=1.45 (0.99-2.11) and G/C: OR=1.37 (1.04-1.81)). In a cross-sectional population of non-diabetic subjects, associations of rs2297508 genotypes with plasma adiponectin levels adjusted for age, sex and BMI (P=0.0017) were observed in that the risk G/G genotype displayed the lowest adiponectin levels. We observed associations of rs2297508 with T2DM prevalence and plasma adiponectin. SREBP-1c has been implicated in the regulation of adiponectin gene expression. Our results therefore raise the possibility that sequence variations at the SREBF-1 gene locus might contribute to T2DM risk, at least in part, by altering circulating adiponectin levels.
    International Journal of Obesity 08/2007; 31(7):1099-103. · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TCF7L2 variants have been consistently associated with type 2 diabetes (T2D) in populations of different ethnic descent. Among them, the rs7903146 T allele is probably the best proxy to evaluate the effect of this gene on T2D risk in additional ethnic groups. In the present study, we investigated the association between the TCF7L2 rs7903146 polymorphism and T2D in Moroccans (406 normoglycemic individuals and 504 T2D subjects) and in white Austrians (1,075 normoglycemic individuals and 486 T2D subjects). Then, we systematically reviewed the association of this single nucleotide polymorphism (SNP) with T2D risk in a meta-analysis, combining our data with data from previous studies. The allelic odds ratios (ORs) for T2D were 1.56 [1.29-1.89] (p = 2.9 x 10(-6)) and 1.52 [1.29-1.78] (p = 3.0 x 10(-7)) in Moroccans and Austrians, respectively. No heterogeneity was found between these two different populations by Woolf test (chi (2) = 0.04, df = 1, p = 0.84). We found 28 original published association studies dealing with the TCF7L2 rs7903146 polymorphism in T2D. A meta-analysis was then performed on 29,195 control subjects and 17,202 cases. No heterogeneity in genotypic distribution was found (Woolf test: chi (2) = 31.5, df = 26, p = 0.21; Higgins statistic: I2 = 14.1%). A Mantel-Haenszel procedure was then performed to provide a pooled odds ratio (OR) of 1.46 [1.42-1.51] (p = 5.4 x 10(-140)). No publication bias was detected, using the conservative Egger's regression asymmetry test (t = -1.6, df = 25, p = 0.11). Compared to any other gene variants previously confirmed by meta-analysis, TCF7L2 can be distinguished by its tremendous reproducibility of association with T2D and its OR twice as high. In the near future, large-scale genome-wide association studies will fully extend the genome coverage, potentially delivering other common diabetes-susceptibility genes like TCF7L2.
    Journal of Molecular Medicine 08/2007; 85(7):777-82. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator activated receptor gamma coactivator 1alpha (PGC-1alpha, PPARGC1A) integrates the transcriptional program of mitochondrial biogenesis. Mitochondria are the main source of cellular reactive oxygen species implicated in atherogenesis. We therefore ascertained associations of PPARGC1A polymorphisms with asymptomatic carotid atherosclerosis. Eight single nucleotide polymorphisms tagging two haplotype blocks within PPARGC1A were studied in 1379 participants of the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk. Early atherosclerosis was assessed by intima-media thickness and extent of plaques (B-score) of the carotid arteries. No associations of carotid artery intima-media thickness measurements with block 1 or 2 haplotype distributions or individual haplotypes were observed. However, the block 1 haplotype carrying the variant C nucleotide at -3974 relative to the transcription start site was associated with disease status defined by the presence of more than one minimal lesion and the -3974 C allele was associated with decreased risk (odds ratio=0.60, P=0.007) after adjustment for linkage disequilibrium between single nucleotide polymorphisms. These result are consistent with the concept that risk factors for distinct carotid phenotypes may vary and suggest, but do not prove, that PGC-1alpha may contribute to the regulation of atherogenic pathways.
    Stroke 10/2006; 37(9):2260-5. · 6.16 Impact Factor
  • S Soyal, F Krempler, H Oberkofler, W Patsch
    [Show abstract] [Hide abstract]
    ABSTRACT: Data derived from several recent studies implicate peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) in the pathogenesis of type 2 diabetes. Lacking DNA binding activity itself, PGC-1alpha is a potent, versatile regulator of gene expression that co-ordinates the activation and repression of transcription via protein-protein interactions with specific, as well as more general, factors contained within the basal transcriptional machinery. PGC-1alpha is suggested to play a pivotal role in the control of genetic pathways that result in homeostatic glucose utilisation in liver and muscle, beta cell insulin secretion and mitochondrial biogenesis. This review focuses on the role of PGC-1alpha in glucose metabolism and considers how PGC-1alpha links cellular glucose metabolism, insulin sensitivity and mitochondrial function, and why defects in PGC-1alpha expression and regulation may contribute to the pathophysiology of type 2 diabetes in humans.
    Diabetologia 08/2006; 49(7):1477-88. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A role of uncoupling protein 2 (UCP2) as negative modulator of insulin secretion has been suggested, but the transcriptional pathways regulating beta-cell UCP2 gene expression have been established in rodents only. We show here that the underlying sequence motifs are not conserved in the human gene and provide evidence for regulatory mechanisms involving the transcriptional cofactor peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1alpha). PGC-1alpha potentiates thyroid hormone (T(3))-mediated transcriptional activation of the human UCP2 gene in INS-1E cells. Two thyroid hormone response elements (TREs) located at -322/-317 (TRE1) and -170/-165 (TRE2) were identified, and mutation of either TRE1 or TRE2 abrogated the stimulatory effect of T(3) treatment. Furthermore, two E-box motifs at -911/-906 (E1) and -743/-738 (E2) are involved in the regulation of UCP2 gene expression by sterol regulatory element binding protein isoforms (SREBP)-1a, -1c, and -2. Mutational analysis revealed that the presence of either E1 or E2 is sufficient to mediate activation of UCP2 gene transcription by nuclear active SREBPs. PGC-1alpha coactivates liver X receptor-mediated expression of SREBP-1c as well as dexamethasone-stimulated SREBP-2 expression in INS-1E cells. These transcriptional responses are antagonized by orphan nuclear receptor short heterodimer partner overexpression, which might explain its positive effects on glucose-stimulated insulin secretion in beta-cells overexpressing UCP2. We also provide evidence that despite a lack of sequence homology within the regulatory region, the principal mechanisms regulating UCP2 gene expression are similar in rats and humans, being consistent with a role for UCP2 as a modulator of insulin secretion in humans.
    Endocrinology 03/2006; 147(2):966-76. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Data derived from several recent studies implicate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in the pathogenesis of type 2 diabetes. Lacking DNA binding activity itself, PGC-1α is a potent, versatile regulator of gene expression that co-ordinates the activation and repression of transcription via protein-protein interactions with specific, as well as more general, factors contained within the basal transcriptional machinery. PGC-1α is suggested to play a pivotal role in the control of genetic pathways that result in homeostatic glucose utilisation in liver and muscle, beta cell insulin secretion and mitochondrial biogenesis. This review focuses on the role of PGC-1α in glucose metabolism and considers how PGC-1α links cellular glucose metabolism, insulin sensitivity and mitochondrial function, and why defects in PGC-1α expression and regulation may contribute to the pathophysiology of type 2 diabetes in humans.
    Diabetologia 01/2006; 49(9):2225-2225. · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) contribute to atherogenesis. Uncoupling protein 2 (UCP2) reduces mitochondrial ROS generation and protects against the disease in animal models. A common -866G/A promoter polymorphism that has been associated with obesity and beta-cell function may also affect UCP2 gene expression in cells of the arterial wall. Genotype distributions of the -866G/A and of a 45nt-del/ins polymorphism in the 3'-untranslated region of the UCP2 gene were determined in 1334 participants of the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR). We observed a modest association of the -866G/A promoter polymorphism and 2-loci haplotypes with asymptomatic carotid atherosclerosis in female study participants. Functional studies revealed increased expression of the -866G wild-type allele in human umbilical vein endothelial cells and differentiated THP-1 cells. Electrophoretic mobility shift assay studies and antibody-interference assays performed with nuclear extracts of various cell lines showed binding of cell-type specific protein complexes to the region encompassing the -866 site and suggested involvement of hypoxia inducible factor 1alpha in the regulation of UCP2 gene expression in endothelial cells and macrophages. Our results suggest a role of UCP2 in atherogenesis as originally proposed from studies in animal and cell culture models.
    Arteriosclerosis Thrombosis and Vascular Biology 04/2005; 25(3):604-10. · 6.34 Impact Factor
  • Source
    01/2005;

Publication Stats

2k Citations
380.23 Total Impact Points

Institutions

  • 1995–2014
    • Krankenhaus Hallein
      Hallein, Salzburg, Austria
  • 2004–2012
    • Paracelsus Medical University Salzburg
      • Department of Internal Medicine (St.Veit)
      Salzburg, Salzburg, Austria
  • 1979–1988
    • Karl-Franzens-Universität Graz
      Gratz, Styria, Austria