Hyuncheol Oh

Wonkwang University, Riri, Jeollabuk-do, South Korea

Are you Hyuncheol Oh?

Claim your profile

Publications (120)267.85 Total impact

  • The Journal of Antibiotics 05/2015; DOI:10.1038/ja.2015.56 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (I), is isolated along with four known analogues from the marine-derived fungus Penicillium sp.
    ChemInform 05/2015; 46(19). DOI:10.1002/chin.201519277
  • ChemInform 01/2015; 46(3). DOI:10.1002/chin.201503196
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical investigation on the methanol extract of the starfish Ctenodiscus crispatus resulted in the isolation of five steroids, (22E,24 xi)-26,27-bisnor-24-methyl-5 alpha-cholest-22-en-3 beta,5,6 beta,15 alpha,25-pentol 25-O-sulfate (1), (22E,24R,25R)-24-methyl-5 alpha-cholest-22-en-3 beta,5,6 beta,15 alpha,25,26-hexol 26-O-sulfate (2), (28R)-24-ethy1-5 alpha-cholesta-3 beta,5,6 beta,8,15 alpha,28,29-heptaol-24-sulfate (3), (25S)-5 alpha-cholestane-3 beta,5,6 beta,15 alpha,16 beta,26-hexaol (4), and Delta 7-sitosterol (5). Their structures were identified by extensive spectroscopic analyses, including 1D, 2D NMR and MS and chemical methods. Compound 4 showed cytotoxicity against human hepatoma HepG2 and glioblastoma U87MG cells via inhibition of cell growth and induction of apoptosis. Induction of apoptosis by 4 was demonstrated by cell death, DNA fragmentation, increased Bax/Bcl-2 protein ratio and the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP).
    ChemInform 01/2015; 46(4). DOI:10.1002/chin.201504215
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2μM). Copyright © 2014 Elsevier Ltd. All rights reserved.
    Bioorganic & Medicinal Chemistry Letters 12/2014; 24(24). DOI:10.1016/j.bmcl.2014.10.035 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the course of a search for anti-neuroinflammatory metabolites from marine fungi, aurantiamide acetate (1) was isolated from marine-derived Aspergillus sp. as an anti-neuroinflammatory component. Compound 1 dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. It also attenuated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and other pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In a further study designed to elucidate the mechanism of its anti-neuroinflammatory effect, compound 1 was shown to block the activation of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-induced BV2 microglial cells by inhibiting the phosphorylation of the inhibitor kappa B-α (IκB)-α. In addition, compound 1 decreased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). These results suggest that compound 1 has an anti-neuroinflammatory effect on LPS stimulation through its inhibition of the NF-κB, JNK and p38 pathways. Copyright © 2014 Elsevier B.V. All rights reserved.
    International Immunopharmacology 12/2014; 23(2):568-74. DOI:10.1016/j.intimp.2014.10.006 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two benzaldehyde derivatives, flavoglaucin (1) and isotetrahydro-auroglaucin (2), were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB) activation by suppressing phosphorylation of IkappaB (IκB). These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1) expression through the nuclear transcription factor-E2-related factor 2 (Nrf2) translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP). Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.
    International Journal of Molecular Sciences 12/2014; 15(12):23749-65. DOI:10.3390/ijms151223749 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three new ent-kaurane diterpenoids, 7β,16α,17-trihydroxy-ent-kauran-19-oic acid (1), 7β,17-dihydroxy-16α-ent-kauran-19-oic acid 19-O-β-d-glucopyranoside ester (2), 7β,17-dihydroxy-ent-kaur-15-en-19-oic acid 19-O-β-d-glucopyranoside ester (3) along with five known compounds, paniculoside IV (4), 16α,17-dihydroxy-ent-kaurane (5), 16β,17-dihydroxy-ent-kaurane (6), 16β,17-dihydroxy-ent-kauran-19-al (7), and 16β,17-dihydroxy-ent-kauran-19-oic acid (8) were isolated from the fruits of Annona glabra. Their chemical structures were elucidated by physical and chemical methods. All compounds were evaluated for inhibitory activity against nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages. As the results, compound 3 showed potent inhibitory LPS-stimulated NO production in RAW 264.7 macrophages with the IC50 value of 0.01±0.01μM; compounds 1 and 7 showed significant inhibitory NO production with the IC50 values of 0.39±0.12μM and 0.32±0.04μM, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Bioorganic & Medicinal Chemistry Letters 11/2014; 25(2). DOI:10.1016/j.bmcl.2014.11.059 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1) was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production by suppressing the expression of inducible NO synthase (iNOS) in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2) production by suppressing cyclooxygenase-2 (COX-2) expression in a concentration-dependent manner (from 10 μM to 80 μM) without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β). In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB) activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α), thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK) pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.
    Molecules 11/2014; 19(11):18073-18089. DOI:10.3390/molecules191118073 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amomum tsao-ko Crevost et Lemaire, used as a spice in Asia, is an important source of Chinese cuisine and traditional Chinese medicines. A. tsao-ko is reported to exert a variety of biological and pharmacological activities, including anti-proliferative, anti-oxidative and neuroprotective effects. In this study, NNMBS227, consisting of the ethanol extract of A. tsao-ko, exhibited potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS227 in the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β) in LPS stimulated macrophages. NNMBS227 also inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by stimulation with LPS. In addition, NNMBS227 induced heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we confirmed an association between the anti-inflammatory effects of NNMBS227 and the up-regulation of HO-1. These findings suggest that Nrf2-dependent increases in the expression of HO-1 induced by NNMBS227 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.
    The American Journal of Chinese Medicine 09/2014; 42(05):1-16. DOI:10.1142/S0192415X14500773 · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Korea and China, the heartwood of Dalbergia odorifera T. Chen is an important traditional medicine used to treat blood disorders, ischemia, swelling, and epigastric pain. In this study, we investigated the inhibitory effects of latifolin, a major neoflavonoid component isolated from the MeOH extract of D. odorifera, on the inflammatory reaction of thioglycollate-elicited peritoneal macrophages exposed to lipopolysaccharide, with a particular focus on heme oxygenase-1 (HO-1) expression and nuclear factor-κB (NF-κB) signaling. Latifolin significantly inhibited the protein and mRNA expression of inducible nitric oxide synthase and COX-2, reduced NO, prostaglandins E2, tumor necrosis factor-α, and interleukin-1β production in primary murine peritoneal macrophages exposed to lipopolysaccharide. Latifolin also suppressed inhibitor κB-α levels, NF-κB nuclear translocation, and NF-κB DNA-binding activity. Furthermore, latifolin upregulated HO-1 expression via nuclear transcription factor-E2-related factor 2 (Nrf2) nuclear translocation. In addition, using inhibitor tin protoporphyrin IX (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of latifolin on the proinflammatory mediators and NF-κB DNA-binding activity were associated with the HO-1 expression. These results suggested that the latifolin-mediated up-regulation of HO-1 expression played a critical role in anti-inflammatory effects in macrophages. This study therefore identified potent therapeutic effects of latifolin, which warrants further investigation as a potential treatment for inflammatory diseases. Copyright © 2014 John Wiley & Sons, Ltd.
    Phytotherapy Research 08/2014; 28(8). DOI:10.1002/ptr.5119 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rhizome of Alisma orientale (Alismatis rhizome) has been used in Asia for promoting diuresis to eliminate dampness from the lower-jiao and to expel heat. In this study, an ethanol extract of the rhizome of Alisma orientale (AOE) was prepared and its effects on adipocyte differentiation of OP9 cells were investigated. Treatment with AOE in a differentiation medium for 5 days resulted in dose-dependent inhibition of lipid droplet formation in OP9 cells. Furthermore, AOE significantly inhibited adipocyte differentiation by downregulating the expression of the master transcription factor of adipogenesis, peroxisome proliferation-activity receptor γ (PPAR γ ), and related genes, including CCAAT/enhancer binding protein β (C/EBP β ), fatty acid-binding protein (aP2), and fatty acid synthase (FAS). AOE exerted its inhibitory effects primarily during the early adipogenesis stage (days 1-2), at which time it also exerted dose-dependent inhibition of the expression of C/EBP β , a protein related to the inhibition of mitotic clonal expansion. Additionally, AOE decreased the expression of autophagy-related proteins, including beclin 1, and the autophagy-related genes, (Atg) 7 and Atg12. Our results indicate that AOE's inhibitory effects on adipocyte differentiation of OP9 cells are mediated by reduced C/EBP β expression, causing inhibition of mitotic clonal expansion and autophagy.
    Evidence-based Complementary and Alternative Medicine 06/2014; 2014:415097. DOI:10.1155/2014/415097 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Saussurea lappa (SL) has been used as a traditional herbal medicine to treat abdominal pain and tenesmus, and has been suggested to possess various biological activities, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral, and cardiotonic activities. The effect of SL on breast cancer metastasis, however, is unknown. Cell migration and invasion are crucial in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is a major component in cancer cell invasion. Methods Cell viability was examined by MTT assay, whereas cell motility was measured by invasion assay. Western blot, Real-time PCR, and Zymography assays were used to investigate the inhibitory effects of ESL on matrix metalloproteinase-9 (MMP-9) expression level in MCF-7 cells. EMSA confirmed the inhibitory effects of ESL on DNA binding of NF- κB in MCF-7 cells. Results Cells threated with various concentrations of Saussurea lappa (ESL) for 24 h. Concentrations of 2 or 4 μM did not lead to a significant change in cell viability or morphology. Therefore, subsequent experiments utilized the optimal non-toxic concentration (2 or 4 μM) of ESL. In this study, we investigated the inhibitory effect of ethanol extract of ESL on MMP-9 expression and cell invasion in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MCF-7 cells. ESL inhibited the TPA-induced transcriptional activation of nuclear factor-kappa B (NF-κB). However, this result obtained that ESL did not block the TPA-induced phosphorylation of the kinases: p38, ERK, and JNK. Therefore, ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Conclusions These results indicate that ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Thus, ESL has potential for controlling breast cancer invasiveness in vitro.
    BMC Complementary and Alternative Medicine 05/2014; 14(1):170. DOI:10.1186/1472-6882-14-170 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sulfuretin is one of the major flavonoid components in Rhus verniciflua Stokes (Anacardiaceae) isolates. In this study, we investigated the protective effects of sulfuretin against tert-butyl hydroperoxide (t-BHP)-induced oxidative injury. The results indicated that the addition of sulfuretin before t-BHP treatment significantly inhibited cytotoxicity and reactive oxygen species (ROS) production in human liver-derived HepG2 cells. Sulfuretin up-regulated the activity of the antioxidant enzyme heme oxygenase (HO)-1 via nuclear factor E2-related factor 2 (Nrf2) translocation into the nucleus and increased the promoter activity of the antioxidant response element (ARE). Moreover, sulfuretin exposure enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family. Furthermore, cell treatment with a JNK inhibitor (SP600125) and ERK inhibitor (PD98059) reduced sulfuretin-induced HO-1 expression and decreased its protective effects. Taken together, these results suggest that the protective effect of sulfuretin against t-BHP-induced oxidative damage in human liver-derived HepG2 cells is attributable to its ability to scavenge ROS and up-regulate the activity of HO-1 through the Nrf2/ARE and JNK/ERK signaling pathways. Therefore, sulfuretin could be advantageous as a bioactive source for the prevention of oxidative injury.
    International Journal of Molecular Sciences 05/2014; 15(5):8863-8877. DOI:10.3390/ijms15058863 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been previously shown that Nardostachys jatamansi (NJ) exhibits anti-inflammatory properties against lipopolysaccharide (LPS) challenges. However, the potency of NJ constituents against LPS-induced inflammatory responses has not been examined. In this present study, we determined which NJ extract fractions exhibit inhibitory effects against LPS-induced inflammatory responses. Among the NJ fractions, NJ-1, NJ-3, NJ-4, and NJ-6 inhibited LPS-induced production of NO. The NJ-3, NJ-4, and NJ-6 fractions also inhibited the production of cytokines, such as IL-1 β , IL-6, and TNF- α . However, NJ-1, NJ-3, NJ-4, and NJ-6 showed differential inhibitory mechanisms against LPS-induced inflammatory responses. NJ-1, NJ-3, and NJ-4 inhibited LPS-induced activation of c-jun NH2-terminal kinase (JNK) and p38 but did not affect activation of extracellular signal-regulated kinase (ERK) or NF- κ B. On the other hand, NJ-6 inhibited activation of MAPKs and NF- κ B. In addition, in vivo experiments revealed that administration of NJ-1, NJ-3, NJ-4, and NJ-6 reduced LPS-induced endotoxin shock, with NJ-6 especially showing a marked protective effect. Taken together, these results provide the evidence for the potential of selective NJ fractions against LPS-induced inflammation. Thus, it will be advantageous to further isolate and determine single effective compounds from these potent fractions.
    Evidence-based Complementary and Alternative Medicine 03/2014; 2014:837835. DOI:10.1155/2014/837835 · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One new diketopiperazine alkaloid, deoxydihydroisoaustamide (I), and a new metabolite (II) are isolated together with the already known and structurally related deoxyisoaustamide.
    ChemInform 02/2014; 45(8). DOI:10.1002/chin.201408221
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a risk factor associated with numerous disorders, such as type 2 diabetes, hypertension, dyslipidemia and coronary heart disease. In this study, we investigated the inhibitory effects of Pericarpium zanthoxyli extract (PZE) on the adipocytic differentiation of OP9 cells. During adipocyte differentiation, the OP9 cells were treated with 0, 10 and 20 µg/ml of PZE at various time intervals, followed by the examination of lipid droplet formation and the mRNA expression of adipogenesis-related genes. The cells treated with PZE during the early period (days 0-2) showed a significant reduction in the accumulation of lipid droplets, which were induced by a standard adipogenic cocktail, as well as a decrease in the expression of the adipogenesis-related transcription factor, peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ-target genes, such as adipocyte protein 2 (aP2), fatty acid synthase (FAS) and other adipocyte markers. Adipocyte differentiation was not inhibited by treatment with PZE during the late stage of differentiation (days 3-5). Thus, the inhibitory effects of PZE on adipocyte differentiation occurred during the early stages of adipogenesis, which was confirmed by the decrease in the levels of CCAAT/enhancer-binding protein β (C/EBPβ) in a dose-dependent manner when the OP9 cells were exposed to PZE. Taken together, our results indicate that PZE inhibit the early stages of adipogenic differentiation by inhibiting C/EBPβ expression.
    International Journal of Molecular Medicine 02/2014; 33(5). DOI:10.3892/ijmm.2014.1667 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three new pyrrolobenzodiazepine derivatives, boseongazepines A-C (1-3), were isolated from a culture broth of Streptomyces sp. 11A057, together with the known compound usabamycin B (4). The structures of 1-4 were determined through the analysis of spectroscopic data including extensive 1D-, 2D-NMR, and MS techniques. Cell growth inhibition effects of these compounds were evaluated against Jurkat, K-562, HL-60, and HepG2 cell lines.
    Bioorganic & medicinal chemistry letters 02/2014; 24(7). DOI:10.1016/j.bmcl.2014.02.022 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the effects of Opuntia humifusa (OH) on cerulein-induced acute pancreatitis (AP). Acute pancreatitis was induced via intraperitoneal injection of cholecystokinin analog cerulein (50 μg/kg). In the OH pretreatment group, OH was administered intraperitoneally (100, 250, or 500 mg/kg) 1 hour before first cerulein injection. In the posttreatment group, OH was administered intraperitoneally (500 mg/kg) 1 hour after the first cerulein injection. Furthermore, we isolated the pancreatic acinar cells using collagenase method, then investigated the acinar cell viability, cytokine productions, and the regulating mechanisms. The both pretreatment and posttreatment of OH treatment attenuated the severity of AP, as shown by the histology of the pancreas and lung, and inhibited neutrophil infiltration; serum amylase and lipase activities; proinflammatory cytokine expression such as interleukin 1, interleukin 6, and tumor necrosis factor α; and cell death including apoptosis and necrosis. Furthermore, OH inhibited the activation of c-Jun N-terminal kinases. These results suggest that OH reduces the severity of AP by inhibiting acinar cell death through c-Jun N-terminal kinases.
    Pancreas 01/2014; 43(1):118-27. DOI:10.1097/MPA.0b013e318296f903 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain is vulnerable to oxidative stress and inflammation that can occur as a result of aging or neurodegenerative diseases. Our work has sought to identify natural products that regulate heme oxygenase (HO)-1 and to determine their mechanism of action in neurodegenerative diseases. KCHO-1 is a novel herbal therapeutic containing 30% ethanol (EtOH) extracts from nine plants. In this study, we investigated the antineuroinflammatory effects of KCHO-1 in lipopolysaccharide- (LPS-) treated mouse BV2 microglia. KCHO-1 inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase- (COX-) 2, and COX-2-derived prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also reduced tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 production. This effect was correlated with the suppression of inhibitor of nuclear factor kappa B-α (IκB-α) phosphorylation and degradation and nuclear factor kappa B (NF-κB) translocation and DNA binding. Additionally, KCHO-1 upregulated HO-1 expression by promoting nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Tin protoporphyrin (SnPP), an HO activity inhibitor, was used to verify the inhibitory effects of KCHO-1 on proinflammatory mediators and proteins associated with HO-1 expression. Our data suggest that KCHO-1 has therapeutic potential in neurodegenerative diseases caused by neuroinflammation.

Publication Stats

1k Citations
267.85 Total Impact Points

Institutions

  • 2001–2015
    • Wonkwang University
      • • College of Pharmacy
      • • Professional Graduate School of Oriental Medicine
      Riri, Jeollabuk-do, South Korea
  • 2006–2012
    • Silla University
      Tsau-liang-hai, Busan, South Korea
    • Chungnam National University
      • Department of Food and Nutrition
      Daiden, Daejeon, South Korea
  • 2010
    • United States Department of Agriculture
      • Agricultural Research Service (ARS)
      Washington, Washington, D.C., United States
  • 2009–2010
    • Korea Polar Research Institute
      Sŏul, Seoul, South Korea
  • 1999–2010
    • University of Iowa
      • Department of Chemistry
      Iowa City, Iowa, United States
    • University of Illinois, Urbana-Champaign
      • Department of Plant Biology
      Urbana, Illinois, United States
  • 2007
    • Korea Research Institute of Bioscience and Biotechnology KRIBB
      • Chemical Biology Research Center
      Anzan, Gyeonggi Province, South Korea