Robbie B Mailliard

University of Pittsburgh, Pittsburgh, Pennsylvania, United States

Are you Robbie B Mailliard?

Claim your profile

Publications (44)171.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recall T cell responses to HIV-1 antigens are used as a surrogate for endogenous cellular immune responses generated during infection. Current methods of identifying antigen-specific T cell reactivity in HIV-1 infection use bulk PBMC, yet ignore professional antigen presenting cells (APC) that could reveal otherwise hidden responses. In the present study, peptides representing autologous variants of MHC class I - restricted epitopes from HIV-1 Gag and Env were used as antigen in IFNγ ELISpot and polyfunctional cytokine assays. Here we show that DC enhance T cell reactivity at all stages of disease progression, but specifically restored T cell reactivity after combination antiretroviral therapy (cART) to early infection levels. Type-1 cytokine secretion was also enhanced by DC and was most apparent late post-cART. We additionally show that DC reveal polyfunctional T cell responses after many years of treatment, when potential immunotherapies would be implemented. These data underscore the potential efficacy of a DC immunotherapy that aims to awaken a dormant, autologous HIV-1-specific CD8(+) T cell response.
    Journal of virology. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detailed knowledge of dengue virus (DENV) cell mediated immunity is still limited. Herewe characterize CD8+ T lymphocytes recognizing 3 novel and 2 known nonstructural protein 3 peptide epitopes in DENV-infected dendritic cells. Three epitopes displayed high conservation (75 – 100%), compared to the others (0-50%). A hierarchy ranking based on magnitude and polyfunctionality of the antigen specific response showed that dominant epitopes were both highly conserved and cross-reactive against multiple DENV serotypes. These results are relevant to DENV pathogenesis and vaccine design.
    Clinical & Experimental Immunology 05/2014; · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simplified maintenance therapy with ritonavir-boosted atazanavir (ATV/r) provides an alternative treatment option for HIV-1 infection that spares nucleoside analogs (NRTI) for future use and decreased toxicity. We hypothesized that the level of immune activation (IA) and recovery of lymphocyte populations could influence virologic outcomes after regimen simplification. Thirty-four participants with virologic suppression ≥48 weeks on antiretroviral therapy (2 NRTI plus protease inhibitor) were switched to ATV/r alone in the context of the ACTG 5201 clinical trial. Flow cytometric analyses were performed on PBMC isolated from 25 patients with available samples, of which 24 had lymphocyte recovery sufficient for this study. Assessments included enumeration of T-cells (CD4/CD8), natural killer (NK) (CD3+CD56+CD16+) cells and cell-associated markers (HLA-DR, CD's 38/69/94/95/158/279). Eight of the 24 patients had at least one plasma HIV-1 RNA level (VL) >50 copies/mL during the study. NK cell levels below the group median of 7.1% at study entry were associated with development of VL >50 copies/mL following simplification by regression and survival analyses (p = 0.043 and 0.023), with an odds ratio of 10.3 (95% CI: 1.92-55.3). Simplification was associated with transient increases in naïve and CD25+ CD4+ T-cells, and had no impact on IA levels. Lower NK cell levels prior to regimen simplification were predictive of virologic rebound after discontinuation of nucleoside analogs. Regimen simplification did not have a sustained impact on markers of IA or T lymphocyte populations in 48 weeks of clinical monitoring. ClinicalTrials.gov NCT00084019.
    PLoS ONE 01/2014; 9(5):e95524. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is unclear if HIV-1 variants lose the ability to prime naïve CD8+ cytotoxic T lymphocytes (CTL) during progressive, untreated infection. We conducted a comprehensive longitudinal analysis of viral evolution and its impact on primary and memory CD8+ T cell responses pre-seroconversion (SC), post-SC, and during combination antiretroviral therapy (cART). Memory T cell responses targeting autologous virus variants reached a nadir by 8 years post-SC with development of AIDS, followed by a transient enhancement of anti-HIV-1 CTL responses upon initiation of cART. We show broad and high magnitude primary T cell responses to late variants in pre-SC T cells, comparable to primary anti-HIV-1 responses induced in T cells from uninfected persons. Despite evolutionary changes, CD8+ T cells could still be primed to HIV-1 variants. Hence, vaccination against late, mutated epitopes could be successful in enhancing primary reactivity of T cells for control of the residual reservoir of HIV-1 during cART.
    Virology 01/2014; s 450–451:34–48. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV-specific cellular immune responses are associated with control of viremia and delayed disease progression. An effective therapeutic vaccine could mimic these effects and reduce the need for continued antiretroviral therapy. DermaVir, a topically administered plasmid DNA-nanomedicine expressing HIV (CladeB) virus-like particles consisting of 15 antigens, induces predominantly central memory T-cell responses. Treated HIV-infected adults (HIV RNA <50 and CD4 >350) were randomized to placebo or escalating DermaVir doses (0.1 or 0.4 mg of plasmid DNA at weeks 1, 7, and 13 in the low- and intermediate-dose groups and 0.8 mg at weeks 0, 1, 6, 7, 12, and 13 in the high-dose group), n = 5-6 evaluable subjects per group. Immunogenicity was assessed by a 12-day cultured interferon-γ enzyme-linked immunosorbent spot assay at baseline and at weeks 9, 17, and 37 using 1 Tat/Rev and 3 overlapping Gag peptide pools (p17, p24, and p15). Groups were comparable at baseline. The study intervention was well tolerated, without dose-limiting toxicities. Most responses were highest at week 17 (4 weeks after last vaccination) when Gag p24 responses were significantly greater among intermediate-dose group compared with control subjects [median (IQR): 67,600 (5633-74,368) versus 1194 (9-1667)] net spot-forming units per million cells, P = 0.032. In the intermediate-dose group, there was also a marginal Gag p15 response increase from baseline to week 17 [2859 (1867-56,933), P = 0.06], and this change was significantly greater than in the placebo group [0 (-713 to 297), P = 0.016]. DermaVir administration was associated with a trend toward greater HIV-specific, predominantly central memory T-cell responses. The intermediate DermaVir dose tended to show the greatest immunogenicity, consistent with previous studies in different HIV-infected patient populations.
    JAIDS Journal of Acquired Immune Deficiency Syndromes 12/2013; 64(4):351-9. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of HIV-1 to rapidly accumulate mutations provides the virus with an effective means of escaping CD8(+) CTL responses. In this study, we describe how subtle alterations in CTL epitopes expressed by naturally occurring HIV-1 variants can result in an incomplete escape from CTL recognition, providing the virus with a selective advantage. Rather than paralyzing the CTL response, these epitope modifications selectively induce the CTL to produce proinflammatory cytokines in the absence of target killing. Importantly, instead of dampening the immune response through CTL elimination of variant Ag-expressing immature dendritic cells (DC), a positive CTL-to-DC immune feedback loop dominates whereby the immature DC differentiate into mature proinflammatory DC. Moreover, these CTL-programmed DC exhibit a superior capacity to mediate HIV-1 trans-infection of T cells. This discordant induction of CTL helper activity in the absence of killing most likely contributes to the chronic immune activation associated with HIV-1 infection, and can be used by HIV-1 to promote viral dissemination and persistence. Our findings highlight the need to address the detrimental potential of eliciting dysfunctional cross-reactive memory CTL responses when designing and implementing anti-HIV-1 immunotherapies.
    The Journal of Immunology 08/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design.
    PLoS Neglected Tropical Diseases 01/2013; 7(10):e2497. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4(+) T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4(+) T cell decline, and nadir CD4(+) T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. IMPORTANCE HIV-associated CD4(+) T cell deficiency is a sine qua non for HIV-associated cryptococcal disease (CD), but not all patients with CD4(+) T cell deficiency develop CD despite serological evidence of previous infection. At present, there are no biomarkers that predict HIV-associated CD risk. The goal of our study was to understand whether Fc gamma receptor (FCGR) polymorphisms that have been shown to portend CD risk in HIV-uninfected people are associated with CD risk in HIV-infected people. Such biomarkers could identify those who would benefit most from targeted prophylaxis and/or earlier treatment, particularly in sub-Saharan Africa, where there are nearly a million cases of HIV-associated CD annually. A biomarker of risk could also identify potential candidates for immunization, should there be a vaccine for Cryptococcus neoformans.
    mBio 01/2013; 4(5). · 6.88 Impact Factor
  • Source
    Retrovirology 09/2012; 9(2). · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monitoring of cell therapeutics in vivo is of major importance to estimate its efficacy. Here, we present a novel intracellular label for (19)F magnetic resonance imaging (MRI)-based cell tracking, which allows for noninvasive, longitudinal cell tracking without the use of radioisotopes. A key advantage of (19)F MRI is that it allows for absolute quantification of cell numbers directly from the MRI data. The (19)F label was tested in primary human monocyte-derived dendritic cells. These cells took up label effectively, resulting in a labeling of 1.7 ± 0.1 × 10(13) (19)F atoms per cell, with a viability of 80 ± 6%, without the need for electroporation or transfection agents. This results in a minimum detection sensitivity of about 2,000 cells/voxel at 7 T, comparable with gadolinium-labeled cells. Comparison of the detection sensitivity of cells labeled with (19)F, iron oxide and gadolinium over typical tissue background showed that unambiguous detection of the (19)F-labeled cells was simpler than with the contrast agents. The effect of the (19)F agent on cell function was minimal in the context of cell-based vaccines. From these data, we calculate that detection of 30,000 cells in vivo at 3 T with a reasonable signal to noise ratio for (19)F images would require less than 30 min with a conventional fast spin echo sequence, given a coil similar to the one used in this study. This is well within acceptable limits for clinical studies, and thus, we conclude that (19)F MRI for quantitative cell tracking in a clinical setting has great potential.
    International Journal of Cancer 07/2011; 129(2):365-73. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells have been shown to mediate important immunoregulatory "helper" functions in addition to their cytolytic activity. In particular, NK cells are capable of preventing maturation-related dendritic cell (DC) "exhaustion," inducing the development of "type-1 polarized" mature DCs (DC1) with an enhanced ability to produce interleukin (IL)-12p70, a factor essential for type-1 immunity and effective anticancer responses. Here we show that the NK cell-mediated type-1 polarization of DCs can be applied in the context of patients with advanced cancer to enhance the efficacy of DCs in inducing tumor-specific cytotoxic T lymphocytes. NK cells isolated from patients with late-stage (stage III and IV) melanoma responded with high interferon-γ production and the induction of type-1-polarized DCs on exposure to defined combinations of stimulatory agents, including interferon-α and IL-18. The resulting DCs showed strongly-enhanced IL-12p70 production on subsequent T-cell interaction compared with immature DCs (average of 19-fold enhancement) and nonpolarized IL-1β/TNF-α/IL-6/PGE(2)-matured "standard" DCs (average of 215-fold enhancement). Additional inclusion of polyinosinic: polycytidylic acid during NK-DC cocultures optimized the expression of CD80, CD86, CD40, and HLA-DR on the resulting (NK)DC1, increased their CCR7-mediated migratory responsiveness to the lymph node-associated chemokine CCL21, and further enhanced their IL-12-producing capacity. When compared in vitro with immature DCs and nonpolarized standard DCs, (NK)DC1 were superior in inducing functional melanoma-specific cytotoxic T lymphocytes capable of recognizing multiple melanoma-associated antigens and killing melanoma cells. These results indicate that the helper function of NK cells can be used in clinical settings to improve the effectiveness of DC-based cancer vaccines.
    Journal of immunotherapy (Hagerstown, Md.: 1997) 03/2011; 34(3):270-8. · 3.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DC) are increasingly being used as cellular vaccines to treat cancer and infectious diseases. While there have been some promising results in early clinical trials using DC-based vaccines, the inability to visualize non-invasively the location, migration and fate of cells once adoptively transferred into patients is often cited as a limiting factor in the advancement of these therapies. A novel perflouropolyether (PFPE) tracer agent was used to label human DC ex vivo for the purpose of tracking the cells in vivo by (19)F magnetic resonance imaging (MRI). We provide an assessment of this technology and examine its impact on the health and function of the DC. Monocyte-derived DC were labeled with PFPE and then assessed. Cell viability was determined by examining cell membrane integrity and mitochondrial lipid content. Immunostaining and flow cytometry were used to measure surface antigen expression of DC maturation markers. Functional tests included bioassays for interleukin (IL)-12p70 production, T-cell stimulatory function and chemotaxis. MRI efficacy was demonstrated by inoculation of PFPE-labeled human DC into NOD-SCID mice. DC were effectively labeled with PFPE without significant impact on cell viability, phenotype or function. The PFPE-labeled DC were clearly detected in vivo by (19)F MRI, with mature DC being shown to migrate selectively towards draining lymph node regions within 18 h. This study is the first application of PFPE cell labeling and MRI cell tracking using human immunotherapeutic cells. These techniques may have significant potential for tracking therapeutic cells in future clinical trials.
    Cytotherapy 04/2010; 12(2):238-50. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8(+) T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8(+) T cells, and could potentially be targeted to activate memory CD8(+) T cells to a broad array of HIV-1 epitopes during ART. We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8(+) T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a. There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8(+) T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection.
    PLoS ONE 01/2010; 5(9):e12936. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of cancer vaccines to induce tumor-specific CD8+ T cells in the circulation of cancer patients has been shown to poorly correlate with their clinical effectiveness. In this study, we report that although Ags presented by different types of mature dendritic cells (DCs) are similarly effective in inducing CD8+ T cell expansion, the acquisition of CTL function and peripheral-type chemokine receptors, CCR5 and CXCR3, requires Ag presentation by a select type of DCs. Both "standard" DCs (matured in the presence of PGE2) and type 1-polarized DCs (DC1s) (matured in the presence of IFNs and TLR ligands, which prevent DCs "exhaustion") are similarly effective in inducing CD8+ T cell expansion and acquisition of CD45RO+IL-7R+IL-15R+ phenotype. However, granzyme B expression, acquisition of CTL activity, and peripheral tissue-type chemokine responsiveness are features exclusively exhibited by CD8+ T cells activated by DC1s. This advantage of DC1s was observed in polyclonally activated naive and memory CD8(+) T cells and in blood-isolated melanoma-specific CTL precursors. Our data help to explain the dissociation between the ability of cancer vaccines to induce high numbers of tumor-specific CD8+ T cells in the blood of cancer patients and their ability to promote clinical responses, providing for new strategies of cancer immunotherapy.
    The Journal of Immunology 12/2009; 184(2):591-7. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ability to cross-present exogenous antigens in the human leukocyte antigen class I pathway is key to the antigen presenting function of mature tumor cell-loaded dendritic cells (DC). Conditions of DC maturation have been shown to be important for DCs ability to produce proinflammatory cytokines and induce T cell effector functions. However, it remains unknown if the different pathways of maturation are associated with modulation of the ability of mature DCs to cross-present tumor antigens (TA). Here, we compare DC matured with 3 clinically relevant cytokine combinations including interleukin (IL)-1 beta, tumor necrosis factor-alpha, IL-6 (termed DC-0), DC-0 cells incubated with prostaglandin-2 (termed DC-0+prostaglandin-2), or DC treated with interferon-gamma, interferon-alpha, tumor necrosis factor-alpha, Poly I:C, and IL1-beta (termed DC-1). We found that these DC vary in their ability to cross-present TA to cytotoxic T lymphocytes (CTL), with the DC-1 cytokine combination being significantly more effective than the other 2. TA cross presentation and CTL priming were strongly correlated with level of expression of the antigen processing machinery components, TAP1 and TAP2, indicating that these components could be used as biomarkers to standardize DC preparations for optimal function. However, the up-regulation of TAP1/TAP2 was not sufficient to explain the enhanced cross-presentation ability of DC-1 cells, as the use of IFN-gamma alone to up-regulate TAP1/TAP2 did not generate DC as effective at cross-presentation as the full DC-1 maturation cytokine combination. These data indicate for the first time that the pathways of DC maturation modulate antigen processing machinery component expression to different extents and that differently matured DC vary in the ability to cross-present TA to human leukocyte antigen class I-restricted CTL.
    Journal of immunotherapy (Hagerstown, Md.: 1997) 07/2009; 32(5):465-73. · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of active tumor-specific immunity in patients with chronic lymphocytic leukemia (CLL) and other hematologic malignancies is compromised by the deficit of endogenous dendritic cells (DCs). In attempt to develop improved vaccination strategies for patients with CLL and other tumors with poorly identified rejection antigens, we tested the ability of ex vivo-generated DCs to cross-present the antigens expressed by CLL cells and to induce CLL-specific, functional CTL responses. Monocyte-derived DCs from CLL patients were induced to mature using a "standard" cytokine cocktail (in IL-1beta, TNF-alpha, IL-6, and PGE2) or using an alpha-type 1-polarized DC (alphaDC1) cocktail (in IL-1beta, TNF-alpha, IFN-alpha, IFN-gamma, and polyinosinic:polycytidylic acid) and were loaded with gamma-irradiated, autologous CLL cells. alphaDC1 from CLL patients expressed substantially higher levels of multiple costimulatory molecules (CD83, CD86, CD80, CD11c, and CD40) than standard DCs (sDCs) and immature DCs, and their expression of CCR7 showed intermediate level. alphaDC1 secreted substantially higher (10-60 times) levels of IL-12p70 than sDCs. Although alphaDC1 and sDCs showed similar uptake of CLL cells, alphaDC1 induced much higher numbers (range, 2.4-38 times) of functional CD8+ T cells against CLL cells. The current demonstration that autologous tumor-loaded alphaDC1 are potent inducers of CLL-specific T cells helps to develop improved immunotherapies of CLL.
    Journal of Leukocyte Biology 08/2008; 84(1):319-25. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.
    The Journal of Immunology 04/2008; 180(6):3857-65. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to the well-established efficacy of preventive vaccines, the effectiveness of therapeutic vaccines remains limited. To develop effective vaccination regimens against cancer, we have analyzed the effect of effector and memory CD8+ T cells on the ability of dendritic cells to mediate the immunologic and antitumor effects of vaccination. We show that in contrast to effector CD8+ T cells that kill antigen-carrying dendritic cells, IFNgamma-producing memory CD8+ T cells act as "helper" cells, supporting the ability of dendritic cells to produce interleukin-12 (IL-12) p70. Promoting the interaction of tumor antigen-carrying dendritic cells with memory-type "heterologous" (tumor-irrelevant) CD8+ T cells strongly enhances the IL-12p70-dependent immunogenic and therapeutic effects of vaccination in the animals bearing established tumors. Our data show that the suppressive and helper functions of CD8+ T cells are differentially expressed at different phases of CD8+ T-cell responses. Selective performance of helper functions by memory (in contrast to effector) CD8+ T cells helps to explain the phenomenon of immune memory and facilitates the design of effective therapeutic vaccines against cancer and chronic infections.
    Cancer Research 11/2007; 67(20):10012-8. · 8.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High mobility group box 1 (HMGB1) is one of the recently defined damage-associated molecular pattern molecules, passively released from necrotic cells and secreted by activated macrophage/monocytes. Whether cytolytic cells induce HMGB1 release from tumor cells is not known. We developed a highly sensitive method for detecting intracellular HMGB1 in tumor cells, allowing analysis of the type of cell death and in particular, necrosis. We induced melanoma cell death with cytolytic lymphokine-activated killing (LAK) cells, tumor-specific cytolytic T lymphocytes, TRAIL, or granzyme B delivery and assessed intracellular HMGB1 retention or release to investigate the mechanism of HMGB1 release by cytolytic cells. HMGB1 release from melanoma cells (451Lu, WM9) was detected within 4 h and 24 h following incubation with IL-2-activated PBMC (LAK activity). HLA-A2 and MART1 or gp100-specific cytolytic T lymphocytes induced HMGB1 release from HLA-A2-positive and MART1-positive melanoma cells (FEM X) or T2 cell-loaded, gp100-specific peptides. TRAIL treatment, however, induced HMGB1 release, and it is interesting that this extrinsic pathway-mediated cell death was blocked with the pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Conversely, granzyme B delivery did not induce HMGB1 release. HMGB1, along with other intracellular factors released from tumor cells induced by cytolysis, may be important components of the disordered tumor microenvironment. This has important implications for the immunotherapy of patients with cancer. Specifically, HMGB1 may promote healing or immune reactivity, depending on the nature of the local inflammatory response and the presence (or absence) of immune effectors.
    Journal of Leukocyte Biology 02/2007; 81(1):75-83. · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous or therapy-induced depigmentation in patients with melanoma has long been considered a favourable prognostic indicator. In this report, we isolated T cells infiltrating the depigmented skin of an HLA-A2+/DR4+ patient with melanoma, and detected a very high frequency of CD8+ T cells specific for melanocortin receptor 1 (MC1R), a hormone receptor involved in cutaneous pigmentation. In particular, tissue-infiltrating CD8+ T cells dominantly recognized the novel MC1R52-60 peptide epitope in an HLA-A2-restricted manner, and peptide-reactive CD8+ T cells were also detected in freshly isolated peripheral blood from this patient. Although type 1 CD4+ T-cell responses against MC1R were not detected in fresh tissue isolates, short-term in-vitro stimulation of peripheral blood lymphocytes resulted in the rapid expansion of CD4+ T cells reactive against novel HLA-DR4-presented epitopes derived from the MC1R protein (i.e. MC1R82-95, MC1R105-118 and MC1R149-161). MC1R peptide-specific CD8+ T-cell clones isolated from the depigmented skin of this patient were characterized by comparatively low functional avidity for specific major histocompatibility complex-peptide complexes and were poorly lytic; however, these effector cells were capable of secreting both interferon-gamma and granzyme B against relevant target cells in vitro, and may have played an important role in the induction of leucoderma in situ in this patient.
    Melanoma Research 05/2006; 16(2):165-74. · 2.52 Impact Factor