Thue W Schwartz

IT University of Copenhagen, København, Capital Region, Denmark

Are you Thue W Schwartz?

Claim your profile

Publications (285)1867.42 Total impact

  • Laura Storjohann · Birgitte Holst · Thue W Schwartz ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.
    Biochemistry 10/2008; 47(35):9198-207. DOI:10.1021/bi8005016 · 3.02 Impact Factor
  • Source
    Thue W Schwartz · Wayne L Hubbell ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Animals sense light and chemical signals through proteins called G-protein-coupled receptors. The crystal structure of one such receptor in complex with a G-protein fragment shows how these receptors are activated.
    Nature 10/2008; 455(7212):473-4. DOI:10.1038/455473a · 41.46 Impact Factor
  • Source
    Laura Storjohann · Birgitte Holst · Thue W Schwartz ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Ala substitution of potential metal-ion binding residues in the main ligand-binding pocket of the Zn2+-activated G protein-coupled receptor 39 (GPR39) receptor did not decrease Zn2+ potency. In contrast, Zn2+ stimulation was eliminated by combined substitution of His17 and His19, located in the N-terminal segment. Surprisingly, substitution of Asp313 located in extracellular loop 3 greatly increased ligand-independent signaling and apparently eliminated Zn2+-induced activation. It is proposed that Zn2+ acts as an agonist for GPR39, not in the classical manner by directly stabilizing an active conformation of the transmembrane domain, but instead by binding to His17 and His19 in the extracellular domain and potentially by diverting Asp313 from functioning as a tethered inverse agonist through engaging this residue in a tridentate metal-ion binding site.
    FEBS Letters 08/2008; 582(17):2583-8. DOI:10.1016/j.febslet.2008.06.030 · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 7 transmembrane-spanning (7TM) chemokine receptors having multiple endogenous ligands offer special opportunities to understand the molecular basis for allosteric mechanisms. Thus, CC-chemokine receptor 1 (CCR1) binds CC-chemokine 3 and 5 (CCL3 and CCL5) with K(d) values of 7.3 and 0.16 nm, respectively, as determined in homologous competition binding assays. However, CCL5 appears to have a >10,000-fold lower affinity in competition against (125)I-CCL3. Mutational mapping revealed that CCL3 and CCL5 both are strongly affected by systematic truncations of the N-terminal extension, whereas only CCL5 and not CCL3 activation is affected by substitutions in the main ligand binding pocket including the conserved GluVII:06 anchor point. A series of metal ion chelator complexes were found to act as full agonists on CCR1 and to be critically affected by the same substitutions in the main ligand binding pocket as CCL5 but not by mutations in the extracellular domain. In agreement with the overlapping binding sites, the small non-peptide agonists displaced radiolabeled CCL5 with high affinity. Interestingly, the same compounds acted as allosteric enhancers of the binding of CCL3, with which they did not overlap in binding site, leading to an increased B(max) and affinity of this chemokine mainly due to an increased association rate. It is concluded that a small molecule agonist through binding deep in the main ligand binding pocket can act as an allosteric enhancer for one endogenous chemokine and at the same time as a competitive blocker of the binding of another endogenous chemokine.
    Journal of Biological Chemistry 06/2008; 283(34):23121-8. DOI:10.1074/jbc.M803458200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive mutants. We observed agonist induced interaction of both GRK5 and GRK2 with the activated NK-1 receptor. In saturation experiments, we observed GRK5 to interact with the activated receptor in a monophasic manner while GRK2 interacted in a biphasic manner with the low affinity phase corresponding to receptor affinity for GRK5. Agonist induced GRK5 interaction with the receptor was dependent on intact kinase-activity, whereas the high affinity phase of GRK2 interaction was independent of kinase activity. We were surprised to find that the BRET(2) saturation experiments indicated that before receptor activation, the full-length NK-1 receptor, but not a functional C-terminal tail-truncated receptor, is preassociated with GRK5 in a relatively low-affinity state. We demonstrate that GRK5 can compete for agonist induced GRK2 interaction with the NK-1 receptor, whereas GRK2 does not compete for receptor interaction with GRK5. We suggest that GRK5 is preassociated with the NK-1 receptor and that GRK5, rather than GRK2, is a key player in competitive regulation of GRK subtype specific interaction with the NK-1 receptor.
    Molecular pharmacology 03/2008; 73(2):349-58. DOI:10.1124/mol.107.038877 · 4.13 Impact Factor
  • Source
    Valentina Kubale · Thue W. Schwartz · Milka Vrecl ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Seven transmembrane (7TM) receptors constitute the largest and the most diverse superfamily of proteins encoded in the human genome comprising at least 850 putative members. These receptors are widely expressed in the body and play a fundamental role in physiology and pathophysiology. Not only do they regulate many physiological processes, but drugs that target these receptors and either activate or inactivate them, account for the most prosperous drugs sold worldwide. Of approximately 500 currently marketed drugs, more then 30 % are modulators of 7TM receptor function. In the last two decades, impressive progress in the understanding of 7TM receptor function has been achieved, though dimerization or oligomerization of 7TM receptors is still a novel and controversial concept. Although a large quantity of data, obtained by different biophysical, biochemical, structural and functional approaches e.g. coimunoprecipitation, Western blot, bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively) argue for dimerization or oligomerization of these receptors, several publications criticized the applied methods and challenged the concept. In this paper the main and the most important techniques are presented and complemented with our ideas.
    Slovenian Veterinary Research 01/2008; 45(3). · 0.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ghrelin receptor (GhrelinR) and its related orphan GPR39 each display constitutive signaling, but only GhrelinRs undergo basal internalization. Here we investigate these differences by considering the roles of the C tail receptor domains for constitutive internalization and activity. Furthermore the interaction between phosphorylated receptors and β-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved Gq signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [D-Arg 1, D-Phe5, D-Trp7,9, Leu11] substance P and a naturally occurring mutant GhrelinR (A204E) with eliminated constitutive activity inhibited basal GhrelinR internalization. Surprisingly, we found that noninternalizing GPR39 was highly phosphorylated and that basal and agonist-induced phosphorylation of the GhR-39 chimera was elevated compared with GhrelinRs. Moreover, basal GhrelinR endocytosis occurred without significant phosphorylation, and it was not prevented by cotransfection of a dominant-negative β-arrestin1(319-418) fragment or by expression in β-arrestin1/2 double-knockout mouse embryonic fibroblasts. In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged β-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity, but the high levels of GPR39 phosphorylation, and of the GhR-39 chimera, are not sufficient to drive endocytosis. In addition, basal GhrelinR internalization occurs independently of β-arrestins.
    Molecular Endocrinology 01/2008; 21(12):3100-12. DOI:10.1210/me.2007-0254 · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AMD3465 is a novel, nonpeptide CXCR4 antagonist and a potent inhibitor of HIV cell entry in that one of the four-nitrogen cyclam rings of the symmetrical, prototype bicyclam antagonist AMD3100 has been replaced by a two-nitrogen N-pyridinylmethylene moiety. This substitution induced an 8-fold higher affinity as determined against (125)I-12G5 monoclonal CXCR4 antibody binding, and a 22-fold higher potency in inhibition of CXCL12-induced signaling through phosphatidylinositol accumulation. Mutational mapping of AMD3465 and a series of analogs of this in a library of 23 mutants covering the main ligand binding pocket of the CXCR4 receptor demonstrated that the single cyclam ring of AMD3465 binds in the pocket around AspIV:20 (Asp(171)), in analogy with AMD3100, whereas the N-pyridinylmethylene moiety mimics the other cyclam ring through interactions with the two acidic anchor-point residues in transmembrane (TM)-VI (AspVI:23/Asp(262)) and TM-VII (GluVII:06/Glu(288)). Importantly, AMD3465 has picked up novel interaction sites, for example, His(281) located at the interface of extracellular loop 3 and TM-VII and HisIII:05 (His(113)) in the middle of the binding pocket. It is concluded that the simple N-pyridinylmethylene moiety of AMD3465 substitutes for one of the complex cyclam moieties of AMD3100 through an improved and in fact expanded interaction pattern mainly with residues located in the extracellular segments of TM-VI and -VII of the CXCR4 receptor. It is suggested that the remaining cyclam ring of AMD3465, which ensures the efficacious blocking of the receptor, in a similar manner can be replaced by chemical moieties allowing for, for example, oral bioavailability.
    Journal of Biological Chemistry 10/2007; 282(37):27354-65. DOI:10.1074/jbc.M704739200 · 4.57 Impact Factor
  • Thue W Schwartz · Birgitte Holst ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Many small-molecule agonists also display allosteric properties. Such ago-allosteric modulators act as co-agonists, providing additive efficacy--instead of partial antagonism--and they can affect--and often improve--the potency of the endogenous agonist. Surprisingly, the apparent binding sites of several ordinary allosteric enhancers and ago-allosteric modulators seem to overlap with those of the endogenous agonists. Different molecular scenarios are proposed to explain this discrepancy from classical allosteric models. In one scenario, the ago-allosteric modulator can interchange between different binding modes. In another, dimeric, receptor scenario, the endogenous agonist binds to one protomer while the ago-allosteric modulator binds to the other, 'allosteric' protomer. It is suggested that testing for ago-allosteric properties should be an integral part of the agonist drug discovery process because a compound that acts with--rather than against--the endogenous agonist could be an optimal agonist drug.
    Trends in Pharmacological Sciences 09/2007; 28(8):366-73. DOI:10.1016/ · 11.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist, 8-[3-(2-methoxyphenoxy)benzyl]-1-phenethyl-1,3,8-triaza-spiro[4.5]decan-4-one (LMD-009), that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol phosphate accumulation, and calcium release with high potencies (EC50 from 11 to 87 nM) and with efficacies similar to that of the endogenous agonist CCL1, and it competed for 125I-CCL1 binding with an affinity of 66 nM. A series of 29 mutations targeting 25 amino acids broadly distributed in the minor and major ligand-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs [2-(1-(3-(2-methoxyphenoxy)benzyl)-4-hydroxypiperidin-4-yl)benzoic acid (LMD-584), N-ethyl-2-4-methoxybenzenesulfonamide (LMD-902), N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-2-phenyl-4-(pyrrolidin-1yl)butanamide (LMD-268), and N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-1,2,3,4-tetrahydro-2-oxoquinoline-4-carboxamide (LMD-174)] included several key-residues for nonpeptide antagonists targeting CCR1, -2, and -5. It is noteworthy that a decrease in potency of nearly 1000-fold was observed for all five compounds for the Ala substitution of the anchor-point GluVII:06 (Glu(286)) and a gain-of-function of 19-fold was observed for LMD-009 (but not the four other analogs) for the Ala substitution of PheVI:16 (Phe(254)). These structural hallmarks were particularly important in the generation of a model of the molecular mechanism of action for LMD-009. In conclusion, we present the first molecular mapping of the interaction of a nonpeptide agonist with a chemokine receptor and show that the binding pocket of LMD-009 and of analogs overlaps considerably with the binding pockets of CC-chemokine receptor nonpeptide antagonists in general.
    Molecular Pharmacology 09/2007; 72(2):327-40. DOI:10.1124/mol.106.035543 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptor 39 (GPR39) is a constitutively active, orphan member of the ghrelin receptor family that is activated by zinc ions. GPR39 is here described to be expressed in a full-length, biologically active seven-transmembrane form, GPR39-1a, as well as in a truncated splice variant five-transmembrane form, GPR39-1b. The 3' exon of the GPR39 gene overlaps with an antisense gene called LYPD1 (Ly-6/PLAUR domain containing 1). Quantitative RT-PCR analysis demonstrated that GPR39-1a is expressed selectively throughout the gastrointestinal tract, including the liver and pancreas as well as in the kidney and adipose tissue, whereas the truncated GPR39-1b form has a more broad expression pattern, including the central nervous system but with highest expression in the stomach and small intestine. In contrast, the LYPD1 antisense gene is highly expressed throughout the central nervous system as characterized with both quantitative RT-PCR and in situ hybridization analysis. A functional analysis of the GPR39 promoter region identified sites for the hepatocyte nuclear factors 1alpha and 4alpha (HNF-1alpha and -4alpha) and specificity protein 1 (SP1) transcription factors as being important for the expression of GPR39. In vivo experiments in rats demonstrated that GPR39 is up-regulated in adipose tissue during fasting and in response to streptozotocin treatment, although its expression is kept constant in the liver from the same animals. GPR39-1a was expressed in white but not brown adipose tissue and was down-regulated during adipocyte differentiation of fibroblasts. It is concluded that the transcriptional control mechanism, the tissue expression pattern, and in vivo response to physiological stimuli all indicate that the GPR39 receptor very likely is of importance for the function of a number of metabolic organs, including the liver, gastrointestinal tract, pancreas, and adipose tissue.
    Molecular Endocrinology 08/2007; 21(7-7):1685-98. DOI:10.1210/me.2007-0055 · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glucagon-like peptide (GLP)-1 receptor is a promising target for the treatment of type 2 diabetes and obesity, and there is great interest in characterizing the pharmacology of the GLP-1 receptor and its ligands. In the present report, we have applied bioluminescence resonance energy transfer assays to measure agonist-induced recruitment of betaarrestins and G-protein-coupled receptor kinase (GRK) 2 to the GLP-1 receptor in addition to traditional measurements of second messenger generation. The peptide hormone oxyntomodulin is described in the literature as a full agonist on the glucagon and GLP-1 receptors. Surprisingly, despite being full agonists in GLP-1 receptor-mediated cAMP accumulation, oxyntomodulin and glucagon were observed to be partial agonists in recruiting betaarrestins and GRK2 to the GLP-1 receptor. We suggest that oxyntomodulin and glucagon are biased ligands on the GLP-1 receptor.
    Journal of Pharmacology and Experimental Therapeutics 07/2007; 322(1):148-54. DOI:10.1124/jpet.107.120006 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large DNA viruses such as herpesvirus and poxvirus encode proteins that target and exploit the chemokine system of their host. These proteins have the potential to block or change the orchestrated recruitment of leukocytes to sites of viral infection. The genome of Kaposi sarcoma-associated herpes virus (KSHV) encodes three chemokine-like proteins named vCCL1, vCCL2, and vCCL3. In this study vCCL3 was probed in parallel with vCCL1 and vCCL2 against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCCL1 acted as a selective CCR8 agonist, whereas vCCL2 was found to act as a broad spectrum chemokine antagonist of human chemokine receptors, including the lymphotactin receptor. In contrast vCCL3 was found to be a highly selective agonist for the human lymphotactin receptor XCR1. The potency of vCCL3 was found to be 10-fold higher than the endogenous human XCL1 chemokine in respect to phosphatidylinositol turnover and calcium mobilization as well as chemotaxis. High expression of XCR1 was found in placenta and neutrophils by real-time PCR. These data are consistent with reports of different expression profiles for vCCL2 and vCCL3 during the life cycle of KSHV, indicate a novel, sophisticated exploitation by the virus of specifically the lymphotactin receptor by both agonist and antagonist mechanisms, and suggest a unique physiological importance of this (somewhat overlooked) chemokine receptor.
    Journal of Biological Chemistry 06/2007; 282(24):17794-805. DOI:10.1074/jbc.M702001200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carboxyamidated wFwLL peptide was used as a core ligand to probe the structural basis for agonism versus inverse agonism in the constitutively active ghrelin receptor. In the ligand, an efficacy switch could be built at the N terminus, as exemplified by AwFwLL, which functioned as a high potency agonist, whereas KwFwLL was an equally high potency inverse agonist. The wFw-containing peptides, agonists as well as inverse agonists, were affected by receptor mutations covering the whole main ligand-binding pocket with key interaction sites being an aromatic cluster in transmembrane (TM)-VI and -VII and residues on the opposing face of TM-III. Gain-of-function in respect of either increased agonist or inverse agonist potency or swap between high potency versions of these properties was obtained by substitutions at a number of positions covering a broad area of the binding pocket on TM-III, -IV, and -V. However, in particular, space-generating substitutions at position III:04 shifted the efficacy of the ligands from inverse agonism toward agonism, whereas similar substitutions at position III: 08, one helical turn below, shifted the efficacy from agonism toward inverse agonism. It is suggested that the relative position of the ligand in the binding pocket between this "efficacy shift region" on TM-III and the opposing aromatic cluster on TM-VI and TM-VII leads either to agonism, i.e. in a superficial binding mode, or it leads to inverse agonism, i.e. in a more profound binding mode. This relationship between different binding modes and opposite efficacy is in accordance with the Global Toggle Switch model for 7TM receptor activation.
    Journal of Biological Chemistry 06/2007; 282(21):15799-811. DOI:10.1074/jbc.M609796200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most non-peptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 non-peptide agonist, LMD-009 that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol-phosphate accumulation and calcium release with high potencies (EC50 from 11 to 87 nM) and with efficacies similar to the endogenous agonist CCL1, and competed for (125)I-CCL1 binding with an affinity of 66 nM. A series of 29 mutations targeting 25 amino acids broadly distributed in the minor and major ligand-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs (LMD584, -902, -268, and -174) included several key-residues for non-peptide antagonists targeting CCR1, -2 and -5. Importantly, a nearly 1000-fold decrease in potency was observed for all five compounds for the Ala substitution of the anchor-point GluVII:06 (Glu(286)) and a 19-fold gain-of-function was observed for LMD-009 (but not the four other analogs) for the Ala substitution of PheVI:16 (Phe(254)). These structural hallmarks were particularly important in the generation of a model of the molecular mechanism of action for LMD-009. In conclusion, we present the first molecular mapping of the interaction of a non-peptide agonist with a chemokine receptor, and show that the binding pocket of LMD-009 and of analogs overlaps considerably with the binding pockets of CC-chemokine receptor non-peptide antagonists in general.
    Molecular pharmacology 06/2007; 72(2). DOI:10.1124/mol.107.035543 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine receptor CXCR3 can exhibit weak coreceptor function for several human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical isolates. These viruses produced microscopically visible cytopathicity in U87.CD4.CXCR3 cell cultures, whereas untransfected (CXCR3-negative) U87.CD4 cells remained uninfected. Depending on the particular virus, the coreceptor efficiency of CXCR3 was 100- to >10,000-fold lower compared to that of CXCR4. A CXCR3 variant carrying the CXCR4 binding pocket was constructed by simultaneous lysine-to-alanine and serine-to-glutamate substitutions at positions 300 and 304 of the CXCR3 receptor. This mutant receptor (CXCR3[K300A, S304E]) showed markedly enhanced HIV coreceptor function compared to the wild-type receptor (CXCR3[WT]). Moreover, the CXCR4 antagonist AMD3100 exhibited antagonistic and anti-HIV activities in U87.CD4.CXCR3[K300A, S304E] cells but not in U87.CD4.CXCR3[WT] cells.
    Journal of Virology 05/2007; 81(7):3632-9. DOI:10.1128/JVI.01941-06 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seven transmembrane segment (7TM) receptors are activated through a common, still rather unclear molecular mechanism by a variety of chemical messengers ranging from monoamines to large proteins. By introducing a His residue at position III:05 in the CXCR3 receptor a metal ion site was built between the extracellular ends of transmembrane (TM) III and TM-IV to anchor aromatic chelators at a location corresponding to the presumed binding pocket for adrenergic receptor agonists. In this construct, free metal ions had no agonistic effect in accordance with the optimal geometry of the metal ion site in molecular models built over the inactive form of rhodopsin. In contrast, the aromatic chelators bipyridine or phenanthrolene in complex with Zn(II) or Cu(II) acted as potent agonists displaying signaling efficacies similar to or even better than the endogenous chemokine agonists. Molecular modeling and molecular simulations combined with mutational analysis indicated that the metal ion site-anchored chelators act as agonists by establishing an aromatic-aromatic, second-site interaction with TyrVI:16 on the inner face of TM-VI. It is noteworthy that this interaction required that the extracellular segment of TM-VI moves inward in the direction of TM-III, whereby TyrVI:16 together with the chelators complete an "aromatic zipper" also comprising PheIII:08 (corresponding to the monoamine receptor anchoring point) and TyrVII:10 (corresponding to the retinal attachment site in rhodopsin). Chemokine agonism was independent of this aromatic zipper. It is proposed that in rhodopsin-like 7TM receptors, small-molecule compounds in general act as agonists in a similar manner as here demonstrated with the artificial, metal ion site anchored chelators, by holding TM-VI bent inward.
    Molecular Pharmacology 04/2007; 71(3):930-41. DOI:10.1124/mol.106.030031 · 4.13 Impact Factor
  • Birgitte Holst · Kristoffer Egerod · Thue W. Schwartz ·

    Handbook of Contemporary Neuropharmacology, 03/2007; , ISBN: 9780470101001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GPR39 is an orphan member of the ghrelin receptor family that recently was suggested to be the receptor for obestatin, a peptide derived from the ghrelin precursor. Here, we compare the effect of obestatin to the effect of Zn(2+) on signal transduction and study the effect of obestatin on food intake. Although Zn(2+) stimulated inositol phosphate turnover, cAMP production, arrestin mobilization, as well as cAMP response element-dependent and serum response element-dependent transcriptional activity in GPR39-expressing cells as opposed to mock-transfected cells, no reproducible effect was obtained with obestatin in the GPR39-expressing cells. Moreover, no specific binding of obestatin could be detected in two different types of GPR39-expressing cells using three different radioiodinated forms of obestatin. By quantitative PCR analysis, GPR39 expression was readily detected in peripheral organs such as duodenum and kidney but not in the pituitary and hypothalamus, i.e. presumed central target organs for obestatin. Obestatin had no significant and reproducible effect on acute food intake in either freely fed or fasted lean mice. It is concluded that GPR39 is probably not the obestatin receptor. In contrast, the potency and efficacy of Zn(2+) in respect of activating signaling indicates that this metal ion could be a physiologically relevant agonist or modulator of GPR39.
    Endocrinology 02/2007; 148(1):13-20. DOI:10.1210/en.2006-0933 · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular part of transmembrane segment V (TM-V) is expected to be involved in the activation process of 7TM receptors, but its role is far from clear. Here, we study the highly constitutively active CXC-chemokine receptor encoded by human herpesvirus 8 (ORF74-HHV8), in which a metal ion site was introduced at the extracellular end of TM-V by substitution of two arginines at positions V:01 and V:05 with histidines [R208H; R212H]. The metal ion site conferred high-potency inverse agonist properties (EC(50), 1.7 microM) to Zn(II) in addition to agonist and allosteric enhancing properties at concentrations >10 microM. The chemokine interaction with [R208H;R212H]-ORF74 was altered compared with wild-type ORF74-HHV8 with decreased agonist (CXCL1/GROalpha) potency (84-fold), affinity (5.8- and 136-fold in competition against agonist and inverse agonist, respectively), and binding capacity (B(max); 25-fold). Zn(II) in activating concentrations (100 microM) acted as an allosteric enhancer as it increased the B(max) (7.1-fold), the potency (9.9-fold), the affinity (1.7- and 6.1-fold in competition against agonist and inverse agonist, respectively), and the efficacy (2.5-fold) of CXCL1/GROalpha. The activating properties of Zn(II) were not due to a metal ion site between the ligand and the receptor because CXCL1/GROalpha analogs in which the putative metal-ion binding residues had been substituted-[H19A] and [H34A]-acted like wild-type CXCL1/GROalpha. Based on the complex action of Zn(II) and on the chemokine interaction for [R208H;R212H]-ORF74, we conclude that the extracellular end of TM-V is important for the activation of this CXC-chemokine receptor.
    Molecular Pharmacology 01/2007; 70(6):1892-901. DOI:10.1124/mol.106.027425 · 4.13 Impact Factor

Publication Stats

14k Citations
1,867.42 Total Impact Points


  • 1981-2015
    • IT University of Copenhagen
      København, Capital Region, Denmark
  • 1995-2012
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2002-2008
    • 7TM Pharma
      Hørsholm, Capital Region, Denmark
    • Universidade Federal de São Paulo
      San Paulo, São Paulo, Brazil
  • 1976-2008
    • Bispebjerg Hospital, Copenhagen University
      • Department of Clinical Biochemistry
      København, Capital Region, Denmark
  • 2007
    • University of Ljubljana
      • Institute of Anatomy, Histology and Embryology
      Lubliano, Ljubljana, Slovenia
  • 2006-2007
    • University of Leipzig
      • Institute of Biochemistry
      Leipzig, Saxony, Germany
  • 1986-2006
    • Copenhagen University Hospital Hvidovre
      • Department of Clinical Physiology and Nuclear Medicine
      Hvidovre, Capital Region, Denmark
    • Glostrup Hospital
      • Department of Surgery D
      Glostrup, Capital Region, Denmark
  • 2003
    • University of British Columbia - Vancouver
      Vancouver, British Columbia, Canada
    • Lund University
      Lund, Skåne, Sweden
  • 1990-2003
    • Novo Nordisk
      København, Capital Region, Denmark
  • 2000
    • University of Minnesota Duluth
      • College of Pharmacy
      Duluth, Minnesota, United States
  • 1999
    • University College London
      • MRC Laboratory for Molecular Cell Biology
      London, ENG, United Kingdom
  • 1998
    • Odense University Hospital
      Odense, South Denmark, Denmark
  • 1996
    • Roche Institute of Molecular Biology
      Nutley, New Jersey, United States
  • 1993
    • Rigshospitalet
      • Department of Clinical Biochemistry
      København, Capital Region, Denmark
    • Kyoto University
      Kioto, Kyōto, Japan
  • 1988
    • Queen's University Belfast
      Béal Feirste, Northern Ireland, United Kingdom
  • 1985
    • Frederiksberg Hospital
      Фредериксберг, Capital Region, Denmark
  • 1979-1981
    • Aarhus University
      • Department of Medical Biochemistry
      Aarhus, Central Jutland, Denmark