T W Schwartz

University of Copenhagen, København, Capital Region, Denmark

Are you T W Schwartz?

Claim your profile

Publications (266)1744.99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Seven transmembrane segment (7TM) receptors are activated through a common, still rather unclear molecular mechanism by a variety of chemical messengers ranging from monoamines to large proteins. By introducing a His residue at position III:05 in the CXCR3 receptor a metal ion site was built between the extracellular ends of transmembrane (TM) III and TM-IV to anchor aromatic chelators at a location corresponding to the presumed binding pocket for adrenergic receptor agonists. In this construct, free metal ions had no agonistic effect in accordance with the optimal geometry of the metal ion site in molecular models built over the inactive form of rhodopsin. In contrast, the aromatic chelators bipyridine or phenanthrolene in complex with Zn(II) or Cu(II) acted as potent agonists displaying signaling efficacies similar to or even better than the endogenous chemokine agonists. Molecular modeling and molecular simulations combined with mutational analysis indicated that the metal ion site-anchored chelators act as agonists by establishing an aromatic-aromatic, second-site interaction with TyrVI:16 on the inner face of TM-VI. It is noteworthy that this interaction required that the extracellular segment of TM-VI moves inward in the direction of TM-III, whereby TyrVI:16 together with the chelators complete an "aromatic zipper" also comprising PheIII:08 (corresponding to the monoamine receptor anchoring point) and TyrVII:10 (corresponding to the retinal attachment site in rhodopsin). Chemokine agonism was independent of this aromatic zipper. It is proposed that in rhodopsin-like 7TM receptors, small-molecule compounds in general act as agonists in a similar manner as here demonstrated with the artificial, metal ion site anchored chelators, by holding TM-VI bent inward.
    Molecular Pharmacology 04/2007; 71(3):930-41. · 4.12 Impact Factor
  • Birgitte Holst, Kristoffer Egerod, Thue W. Schwartz
    Handbook of Contemporary Neuropharmacology, 03/2007; , ISBN: 9780470101001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GPR39 is an orphan member of the ghrelin receptor family that recently was suggested to be the receptor for obestatin, a peptide derived from the ghrelin precursor. Here, we compare the effect of obestatin to the effect of Zn(2+) on signal transduction and study the effect of obestatin on food intake. Although Zn(2+) stimulated inositol phosphate turnover, cAMP production, arrestin mobilization, as well as cAMP response element-dependent and serum response element-dependent transcriptional activity in GPR39-expressing cells as opposed to mock-transfected cells, no reproducible effect was obtained with obestatin in the GPR39-expressing cells. Moreover, no specific binding of obestatin could be detected in two different types of GPR39-expressing cells using three different radioiodinated forms of obestatin. By quantitative PCR analysis, GPR39 expression was readily detected in peripheral organs such as duodenum and kidney but not in the pituitary and hypothalamus, i.e. presumed central target organs for obestatin. Obestatin had no significant and reproducible effect on acute food intake in either freely fed or fasted lean mice. It is concluded that GPR39 is probably not the obestatin receptor. In contrast, the potency and efficacy of Zn(2+) in respect of activating signaling indicates that this metal ion could be a physiologically relevant agonist or modulator of GPR39.
    Endocrinology 02/2007; 148(1):13-20. · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular part of transmembrane segment V (TM-V) is expected to be involved in the activation process of 7TM receptors, but its role is far from clear. Here, we study the highly constitutively active CXC-chemokine receptor encoded by human herpesvirus 8 (ORF74-HHV8), in which a metal ion site was introduced at the extracellular end of TM-V by substitution of two arginines at positions V:01 and V:05 with histidines [R208H; R212H]. The metal ion site conferred high-potency inverse agonist properties (EC(50), 1.7 microM) to Zn(II) in addition to agonist and allosteric enhancing properties at concentrations >10 microM. The chemokine interaction with [R208H;R212H]-ORF74 was altered compared with wild-type ORF74-HHV8 with decreased agonist (CXCL1/GROalpha) potency (84-fold), affinity (5.8- and 136-fold in competition against agonist and inverse agonist, respectively), and binding capacity (B(max); 25-fold). Zn(II) in activating concentrations (100 microM) acted as an allosteric enhancer as it increased the B(max) (7.1-fold), the potency (9.9-fold), the affinity (1.7- and 6.1-fold in competition against agonist and inverse agonist, respectively), and the efficacy (2.5-fold) of CXCL1/GROalpha. The activating properties of Zn(II) were not due to a metal ion site between the ligand and the receptor because CXCL1/GROalpha analogs in which the putative metal-ion binding residues had been substituted-[H19A] and [H34A]-acted like wild-type CXCL1/GROalpha. Based on the complex action of Zn(II) and on the chemokine interaction for [R208H;R212H]-ORF74, we conclude that the extracellular end of TM-V is important for the activation of this CXC-chemokine receptor.
    Molecular Pharmacology 01/2007; 70(6):1892-901. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P functions as a low-potency antagonist but a high-potency full inverse agonist on the ghrelin receptor. Through a systematic deletion and substitution analysis of this peptide, the C-terminal carboxyamidated pentapeptide wFwLX was identified as the core structure, which itself displayed relatively low inverse agonist potency. Mutational analysis at 17 selected positions in the main ligand-binding crevice of the ghrelin receptor demonstrated that ghrelin apparently interacts only with residues in the middle part of the pocket [i.e., between transmembrane (TM)-III, TM-VI and TM-VII]. In contrast, the inverse agonist peptides bind in a pocket that extends all the way from the extracellular end of TM-II (AspII:20) across between TM-III and TM-VI/VII to TM-V and TM-IV. The potency of the main inverse agonist could be improved up to 20-fold by a number of space-generating mutants located relatively deep in the binding pocket at key positions in TM-III, TM-IV and TM-V. It is proposed that the inverse agonists prevent the spontaneous receptor activation by inserting relatively deeply across the main ligand-binding pocket and sterically blocking the movement of TM-VI and TM-VII into their inward-bend, active conformation. The combined structure-functional analysis of both the ligand and the receptor allowed for the design of a novel, N-terminally Lys-extended analog of wFwLL, which rescued the high-potency, selective inverse agonism that was dependent upon both AspII:20 and GluIII:09. The identified pharmacophore can possibly serve as the basis for targeted discovery of also nonpeptide inverse agonists for the ghrelin receptor.
    Molecular Pharmacology 10/2006; 70(3):936-46. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PYY3-36 is a biopharmaceutical antiobesity agent under development as well as an endogenous satiety hormone, which is generated by dipeptidyl peptidase-IV digestion of polypetide YY (PYY), and in contrast to the parent hormone, PYY is highly selective for the Y2 versus the Y1 receptor. NMR analysis revealed a highly ordered, back-folded structure for human PYY in aqueous solution similar to the classical PP-fold structure of pancreatic polypeptide. The NMR analysis of PYY3-36 also showed a folded structure resembling a PP-fold, which however was characterized by far fewer long distance NOEs than the PP-fold observed in the full-length peptide. This suggests that either a conformational change has occurred in the N-terminal segment of PYY3-36 or that this segments is characterized by larger dynamics. The study supports the notion that the PP-fold is crucial for establishing simultaneous interactions with two subsites in the receptor for binding of, respectively, the N- and C-terminal ends of PYY. The Y2 receptor only requires recognition of the C-terminal segment of the molecule as displayed by the Y2 selective PYY3-36.
    Biochemistry 08/2006; 45(27):8350-7. · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much evidence indicates that, during activation of seven-transmembrane (7TM) receptors, the intracellular segments of the transmembrane helices (TMs) move apart with large amplitude, rigid body movements of especially TM-VI and TM-VII. In this study, AspIII:08 (Asp113), the anchor point for monoamine binding in TM-III, was used as the starting point to engineer activating metal ion sites between the extracellular segments of the beta2-adrenergic receptor. Cu(II) and Zn(II) alone and in complex with aromatic chelators acted as potent (EC50 decreased to 0.5 microm) and efficacious agonists in sites constructed between positions III:08 (Asp or His), VI:16 (preferentially Cys), and/or VII:06 (preferentially Cys). In molecular models built over the backbone conformation of the inactive rhodopsin structure, the heavy atoms that coordinate the metal ion were located too far away from each other to form high affinity metal ion sites in both the bidentate and potential tridentate settings. This indicates that the residues involved in the main ligand-binding pocket will have to move closer to each other during receptor activation. On the basis of the distance constraints from these activating metal ion sites, we propose a global toggle switch mechanism for 7TM receptor activation in which inward movement of the extracellular segments of especially TM-VI and, to some extent, TM-VII is coupled to the well established outward movement of the intracellular segments of these helices. We suggest that the pivots for these vertical seesaw movements are the highly conserved proline bends of the involved helices.
    Journal of Biological Chemistry 07/2006; 281(25):17337-46. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV)-induced receptor 2 (EBI2) is an orphan seven-transmembrane (7TM) receptor originally identified as the most up-regulated gene (>200-fold) in EBV-infected cells. Here we show that EBI2 signals with constitutive activity through Galpha(i) as determined by a receptor-mediated inhibition of forskolin-induced cAMP production and an induction of the serum response element-driven transcriptional activity in a pertussis toxin-sensitive manner. Galpha(s) and Galpha(q) were not activated constitutively as determined by the lack of cAMP production, the lack of inositol phosphate turnover, and the lack of activities of the transcription factors: cAMP response element-binding protein and nuclear factor-kappaB. Immunohistochemistry and confocal microscopy of FLAG- and green fluorescent protein-tagged EBI2 revealed cell-surface expression. A putative N-terminal truncated version of EBI2, delta4-EBI2, showed similar expression and signaling through Galpha(i) as full-length EBI2. By using a 32P-labeled EBI2 probe we found a very high expression in lymphoid tissue (spleen and lymph node) and peripheral blood mononuclear cells and a high expression in lung tissue. Real-time PCR of EBV-infected cells showed high expression of EBI2 during latent and lytic infection, in contrast to the EBV-encoded 7TM receptor BILF1, which was induced during lytic infection. EBI2 clustered with the orphan GPR18 by alignment analysis as well as by close proximity in the chromosomal region 13q32.3. Based on the constitutive signaling and cellular expression pattern of EBI2, it is suggested that it may function in conjunction with BILF1 in the reprogramming of the cell during EBV infection.
    Journal of Biological Chemistry 05/2006; 281(19):13199-208. · 4.60 Impact Factor
  • Source
    Birgitte Holst, Thue W Schwartz
    [Show abstract] [Hide abstract]
    ABSTRACT: The ghrelin receptor is known from in vitro studies to signal in the absence of the hormone ghrelin at almost 50% of its maximal capacity. But, as for many other 7-transmembrane receptors, the in vivo importance of this ligand-independent signaling has remained unclear. In this issue of the JCI, Pantel et al. find that a natural mutation in the ghrelin receptor, Ala204Glu, which is associated with a selective loss of constitutive activity without affecting ghrelin affinity, potency, or efficacy, segregates in 2 families with the development of short stature (see the related article beginning on page 760). By combination of the observations from this study with those related to the phenotype of subjects carrying another natural ghrelin receptor mutation, Phe279Leu, having identical molecular-pharmacological properties, it is proposed that selective lack of ghrelin receptor constitutive signaling leads to a syndrome characterized not only by short stature, but also by obesity that apparently develops during puberty.
    Journal of Clinical Investigation 04/2006; 116(3):637-41. · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The multitude of chemically highly different agonists for 7TM receptors apparently do not share a common binding mode or active site but nevertheless act through induction of a common molecular activation mechanism. A global toggle switch model is proposed for this activation mechanism to reconcile the accumulated biophysical data supporting an outward rigid-body movement of the intracellular segments, as well as the recent data derived from activating metal ion sites and tethered ligands, which suggests an opposite, inward movement of the extracellular segments of the transmembrane helices. According to this model, a vertical see-saw movement of TM-VI-and to some degree TM-VII-around a pivot corresponding to the highly conserved prolines will occur during receptor activation, which may involve the outer segment of TM-V in an as yet unclear fashion. Small-molecule agonists can stabilize such a proposed active conformation, where the extracellular segments of TM-VI and -VII are bent inward toward TM-III, by acting as molecular glue deep in the main ligand-binding pocket between the helices, whereas larger agonists, peptides, and proteins can stabilize a similar active conformation by acting as Velcro at the extracellular ends of the helices and the connecting loops.
    Annual Review of Pharmacology 02/2006; 46:481-519. · 18.52 Impact Factor
  • Mette M Rosenkilde, Thue W Schwartz
    [Show abstract] [Hide abstract]
    ABSTRACT: A majority of small molecule non-peptide ligands for chemokine receptors in general are characterized by the presence of one or two centrally located, positively charged nitrogen atoms and these compounds are also often of relatively similar elongated overall structure with terminal aromatic moieties. In the corresponding main ligand-binding crevice of the chemokine 7TM receptors is found a centrally located glutamic acid residue in position 6 of transmembrane segment VII in 74% of the chemokine receptors but only in approx. 1% of non-chemokine receptors. GluVII:06 has been demonstrated to be crucially important for the binding and action of a number of non-peptide ligands in for example the CCR1, CCR2 and CCR5 receptors. It is proposed that in chemokine receptors in general GluVII:06 serves as a selective anchor point for the centrally located, positively charged nitrogen of the small molecule ligands and that the two peripheral chemical moieties of the ligands from this central point in the receptor structure explore each of the two halves of the main ligand binding pocket. It is envisioned that knowledge of this binding mode can be exploited in structure-based discovery and design of novel chemokine receptor ligands and especially ligands with specifically optimized properties.
    Current Topics in Medicinal Chemistry 02/2006; 6(13):1319-33. · 3.45 Impact Factor
  • Thue W Schwartz, Birgitte Holst
    [Show abstract] [Hide abstract]
    ABSTRACT: Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy-superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but-importantly-in the "other" or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the "other" protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.
    Journal of Receptor and Signal Transduction Research 02/2006; 26(1-2):107-28. · 1.61 Impact Factor
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the rhodopsin-like 7TM receptors, the MC receptors are functionally unique because their high constitutive signaling activity is regulated not only by endogenous peptide agonists—MSH peptides—but also by endogenous inverse agonists, namely, the proteins agouti and AGRP. Moreover, the metal-ion Zn2+ increases the signaling activity of at least the MC1 and MC4 receptors in three distinct ways: (1) by directly functioning as an agonist; (2) by potentiating the action of the endogenous agonist; and (3) by inhibiting the binding of the endogenous inverse agonist. Structurally the MC receptors are part of a small subset of 7TM receptors in which the main ligand-binding crevice, and especially extracellular loops 2 and 3, appear to be specially designed for easy ligand access and bias towards an active state of the receptor—i.e., constitutive activity. Thus, in the MC receptors extracellular loop 2 is ultrashort because TM-IV basically connects directly into TM-V, whereas extracellular loop 3 appears to be held in a particular, constrained conformation by a putative, internal disulfide bridge. The interaction mode for the small and well-defined zinc-ion between a third, free Cys residue in extracellular loop 3 and conceivably an Asp residue located at the inner face of TM-III gives important information concerning the activation mechanism for the MC receptors.
    Annals of the New York Academy of Sciences 01/2006; 994(1):1 - 11. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine receptors CCR5 and CXCR4 function as coreceptors for human immunodeficiency virus (HIV) and are attractive targets for the development of anti-HIV drugs. The most potent CXCR4 antagonists described until today are the bicyclams. The prototype compound, AMD3100, exhibits potent and selective anti-HIV activity against CXCR4-using (X4) viruses and showed antiviral efficacy in X4 HIV-1-infected persons in a phase II clinical trial. However, AMD3100 lacks oral bioavailability due to its high overall positive charge. Initial structure-activity relationship studies with bicyclam analogues suggested that the bis-macrocyclic structure was a prerequisite for anti-HIV activity. Now, we report that the N-pyridinylmethylene cyclam AMD3465, which lacks the structural constraints mentioned above, fully conserves all the biological properties of AMD3100. Like AMD3100, AMD3465 blocked the cell surface binding of both CXCL12 (the natural CXCR4 ligand), and the specific anti-CXCR4 monoclonal antibody 12G5. AMD3465 dose-dependently inhibited intracellular calcium signaling, chemotaxis, CXCR4 endocytosis and mitogen-activated protein kinase phosphorylation induced by CXCL12. Compared to the bicyclam AMD3100, AMD3465 was even 10-fold more effective as a CXCR4 antagonist, while showing no interaction whatsoever with CCR5. As expected, AMD3465 proved highly potent against X4 HIV strains (IC50: 1-10 nM), but completely failed to inhibit the replication of CCR5-using (R5) viruses. In conclusion, AMD3465 is a novel, monomacrocyclic anti-HIV agent that specifically blocks the interaction of HIV gp120 with CXCR4. Although oral bioavailability is not yet achieved, the monocyclams, with their decreased molecular charge as compared to the bicyclams, embody an important step forward in the design of oral CXCR4 antagonists that can be clinically used as anti-HIV drugs.
    Biochemical Pharmacology 10/2005; 70(5):752-61. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two nonpeptide (L692,429 and MK-677) and two peptide [GH-releasing peptide (GHRP)-6 and ghrelin] agonists were compared in binding and in signal transduction assays: calcium mobilization, inositol phosphate turnover, cAMP-responsive element (CRE), and serum-responsive element (SRE) controlled transcription, as well as arrestin mobilization. MK-677 acted as a simple agonist having an affinity of 6.5 nm and activated all signal transduction systems with similar high potency (0.2-1.4 nm). L-692,429 also displayed a very similar potency in all signaling assays (25-60 nm) but competed with a 1000-fold lower apparent affinity for ghrelin binding and surprisingly acted as a positive allosteric receptor modulator by increasing ghrelin's potency 4- to 10-fold. In contrast, the potency of GHRP-6 varied 600-fold (0.1-61 nm) depending on the signal transduction assay, and it acted as a negative allosteric modulator of ghrelin signaling. Unexpectedly, the maximal signaling efficacy for ghrelin was increased above what was observed with the hormone itself during coadministration with the nonendogenous agonists. It is concluded that agonists for the ghrelin receptor vary both in respect of their intrinsic agonist properties and in their ability to modulate ghrelin signaling. A receptor model is presented wherein ghrelin normally only activates one receptor subunit in a dimer and where the smaller nonendogenous agonists bind in the other subunit to act both as coagonists and as either neutral (MK-677), positive (L-692,429), or negative (GHRP-6) modulators of ghrelin function. It is suggested that an optimal drug candidate could be an agonist that also is a positive modulator of ghrelin signaling.
    Molecular Endocrinology 10/2005; 19(9):2400-11. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The highly conserved Arg in the so-called DRY motif (Asp-Arg-Tyr) at the intracellular end of transmembrane helix 3 is in general considered as an essential residue for G protein coupling in rhodopsin-like seven transmembrane (7TM) receptors. In the open reading frame 74 (ORF74) receptor encoded by equine herpesvirus 2 (EHV2), the DRY motif is substituted with a DTW motif. Nevertheless, this receptor signaled with high constitutive activity through Gi as determined by a receptor-mediated inhibition of forskolin-induced cAMP-production and by an induction of the serum response element-driven transcriptional activity through a pertussis toxin-sensitive manner. Gs and Gq were not activated constitutively as determined by the lack of inositol phosphate turnover and activities of the three transcription factors: cAMP response element-binding protein (CREB), nuclear factor-kappaB, and nuclear factor of activated T cells. Coexpression of the ORF74-EHV2 receptor with the promiscuous G protein Gqi4myr supported the constitutive Gi activation as determined by inositol phosphate turnover and CREB activation. The constitutive activity was inhibited by nonpeptide inverse agonists with micromolar potencies, and the chemokine CXCL6 acted as a high-affinity agonist. It is noteworthy that reconstitution of the DRY motif resulted in a 4- to 5-fold decrease of the constitutive activity. Both the wild type and the receptor with the reconstituted DRY motif were expressed at the cell surface as indicated by immunohistochemistry and enzyme-linked immunosorbent assay analysis. It is concluded that the Arg of the DRY motif in transmembrane helix 3 is not essential for G protein coupling based on the constitutive as well as the ligand-mediated activity observed for ORF74-EHV2.
    Molecular Pharmacology 08/2005; 68(1):11-9. · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization compared with wild-type receptors. This distinct phenotype of the fusion proteins can not be mimicked by coexpressing wild-type receptor with (beta)arr2. However, when the wild-type receptor was coexpressed with both (beta)arr2 and G protein-coupled receptor kinase 5, a phenotype similar to that observed for the fusion constructs was observed. We conclude that the glucagon-like peptide 1 fusion construct mimics the natural interaction of the receptor with (beta)arr2 with respect to binding peptide ligands, G protein-mediated signaling and internalization, and that this distinct molecular phenotype is reminiscent of that which has previously been characterized for family A G protein-coupled receptors, suggesting similarities in the effect of (beta)arr interaction between family A and B receptors also at the molecular level.
    Molecular Endocrinology 04/2005; 19(3):812-23. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kaposi's sarcoma (KS)-associated herpesvirus or human herpes virus 8 is considered the etiological agent of KS, a highly vascularized neoplasm that is the most common tumor affecting HIV/AIDS patients. The KS-associated herpesvirus/human herpes virus 8 open reading frame 74 encodes a constitutively active G protein-coupled receptor known as vGPCR that binds CXC chemokines with high affinity. In this study, we show that conditional transgenic expression of vGPCR by cells of endothelial origin triggers an angiogenic program in vivo, leading to development of an angioproliferative disease that resembles KS. This angiogenic program consists partly in the expression of the angiogenic factors placental growth factor, platelet-derived growth factor B, and inducible NO synthase by the vGPCR-expressing cells. Finally, we show that continued vGPCR expression is essential for progression of the KS-like phenotype and that down-regulation of vGPCR expression results in reduced expression of angiogenic factors and regression of the lesions. Together, these findings implicate vGPCR as a key element in KS pathogenesis and suggest that strategies to block its function may represent a novel approach for the treatment of KS.
    The Journal of Immunology 04/2005; 174(6):3686-94. · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28, that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent manner. In this study, our goal was to understand the molecular interactions between chemokines and the HCMV-encoded US28 receptor. To achieve this goal, a double approach has been used, consisting in the analysis of both receptor and ligand mutants. This approach has led us to identify several amino acids located in the N terminus of US28 that differentially contribute to the high affinity binding of CC versus CX3C chemokines. Additionally, our results highlight the importance of secondary modifications occurring at US28, such as sulfation, for ligand recognition. Finally, the effects of chemokine dimerization and interaction with glycosaminoglycans (GAGs) on chemokine binding and activation of US28 were investigated as well using CCL4 as model ligand. In line with the two-state model describing chemokine/receptor interaction, we show that an aromatic residue in the N-loop region of CCL4 promotes tight binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.
    Journal of Biological Chemistry 03/2005; 280(5):3275-85. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for variation and to assess whether identified variants confer an increased risk of Type 2 diabetes or altered insulin release. Mutation analysis was performed in 43 patients with Type 2 diabetes, 18 normal glucose-tolerant subjects, and 3 maturity-onset of diabetes in the young (MODY) X patients using direct sequencing. Genotyping was performed using polymerase chain reaction (PCR)-generated primer extension products analysis by high throughput chip-based mass spectrometry (MALDI-TOF). The potential impact of GPR40 mutations on [(3)H]-myo-inositol turnover was estimated in COS-7 cells after stimulation with various concentrations of 5,8,11-eicosatriynoic acid. Two nucleotide substitutions, an Arg211His polymorphism and a rare Asp175Asn mutation, were identified. Both variants showed EC(50) values similar to the wild type. However, the maximal efficacy of the rare Asp175Asn was 39% lower compared with the wild type (P = 0.01). The Arg211His polymorphism had a similar allele frequency among 1384 Type 2 diabetic patients [MAF%; 23.4 (95% CI: 21.8-25.0)] and 4424 middle-aged glucose-tolerant subjects [24.1% (23.2-25.0)]. A genotype-quantitative trait study of 5597 non-diabetic, middle-aged subjects from the Inter99 cohort showed no significant differences in oral glucose tolerance test (OGTT)-derived estimates of insulin release between carriers of various GPR40 genotypes. Variations in the coding region of GPR40 do not appear to be associated with Type 2 diabetes or insulin release alterations.
    Diabetic Medicine 02/2005; 22(1):74-80. · 3.06 Impact Factor

Publication Stats

10k Citations
1,744.99 Total Impact Points


  • 1980–2014
    • University of Copenhagen
      • • Department of Neuroscience and Pharmacology
      • • The Novo Nordisk Foundation Center for Basic Metabolic Research
      • • Department of Drug Design and Pharmacology
      • • Department of Pharmacology and Pharmacotherapy
      • • Department of Clinical Biochemistry
      • • Centre for Medical Parasitology
      København, Capital Region, Denmark
  • 1985–2013
    • IT University of Copenhagen
      København, Capital Region, Denmark
    • Frederiksberg Hospital
      Фредериксберг, Capital Region, Denmark
  • 2010
    • French Institute of Health and Medical Research
      • Centre de Psychiatrie et Neurosciences U894
      Paris, Ile-de-France, France
  • 2002–2008
    • 7TM Pharma
      Hørsholm, Capital Region, Denmark
  • 2007
    • KU Leuven
      • Department of Microbiology and Immunology
      Leuven, VLG, Belgium
  • 1998–2001
    • University College London
      • MRC Laboratory for Molecular Cell Biology
      London, ENG, United Kingdom
  • 1995
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1989
    • Glostrup Hospital
      Glostrup, Capital Region, Denmark
  • 1976–1988
    • Bispebjerg Hospital, Copenhagen University
      København, Capital Region, Denmark
  • 1984
    • Lund University
      • Department of Surgery
      Lund, Skåne, Sweden