Piero Del Boccio

Università degli Studi G. d'Annunzio Chieti e Pescara, Chieta, Abruzzo, Italy

Are you Piero Del Boccio?

Claim your profile

Publications (38)141.28 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple Sclerosis (MuS) is a disease caused due to an autoimmune attack against myelin components in which non proteic mediators may play a role. Recent research in metabolomics and lipidomics has been driven by rapid advances in technologies such as mass spectrometry and computational methods. They can be used to study multifactorial disorders like MuS, highlighting the effects of disease on metabolic profiling, regardless of the multiple trigger factors. We coupled MALDI-TOF-MS untargeted lipidomics and targeted LC-MS/MS analysis of acylcarnitines and aminoacids to compare cerebrospinal fluid metabolites in 13 MuS subjects and in 12 patients with Other Neurological Diseases (OND). After data processing and statistical evaluation, we found 10 metabolites that significantly (p < 0.05) segregate the two clinical groups. The most relevant result was the alteration of phospholipids levels in MuS and the correlation between some of them with clinical data. In particular lysophosphatidylcholines (m/z = 522.3 Da, 524.3 Da) and an unidentified peak at m/z = 523.0 Da correlated to the Link index, lysophosphatidylinositol (m/z = 573.3 Da) correlated to EDSS and phosphatidylinositol (m/z = 969.6 Da) correlated to disease duration. We also found high levels of glutamate in MuS. In conclusion, our integrated mass spectrometry approach showed high potentiality to find metabolic alteration in cerebrospinal fluid. These data, if confirmed in a wider clinical study, could open the door for the discovery of novel candidate biomarkers of MuS.
    Molecular BioSystems 02/2015; DOI:10.1039/c4mb00700j · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteomics and metabolomics investigations of body fluids represent the most challenge for biomarker discovery of several diseases. The search for biomarkers is actually conducted in different body fluids, even if the ideal biomarker should be found in a easily accessible biological fluid, because, if validated, the biomarker could be sought in the healthy population. In this vision tears could be considered an optimum material obtainable by non invasive procedures. In the last years, there was more interest from the scientific community in the study of tears for the research of new biomarkers not only for ocular diseases. In this review we provide a discussion on the current state of biomarkers research in tears and their relevance for clinical practice, reporting the main results of clinical proteomics studies on systemic and eye diseases. We summarize the main methods for tear samples analyses reporting recent advances in "omics" platforms for tears investigations. Moreover, we want to take stock of the emerging field of metabolomics and lipidomics as a new and integrated approach to study protein-metabolites interplay for biomarkers research, where tears represent a still unexplored and attractive field. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Proteomics. Clinical applications 02/2015; 9(1-2). DOI:10.1002/prca.201400084 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blastoschizomyces capitatus is an uncommon, opportunistic pathogenic fungus, which causes invasive and disseminated infections. This microorganism is normally present in both environmental and normal human flora. Within a host, B. capitatus is able to grow in both unicellular yeast and multicellular filamentous growth forms. In this study, we obtained in vitro morphological conversion of B. capitatus from yeast-to-mycelial phase to investigate the presence and expression of glutathione transferase (GST) enzymes in both cell forms. A protein with GST activity using the model substrate 1-chloro-2,4-dinitrobenzene was detected in both morphologies and identified by tandem mass spectrometry as a eukaryotic elongation factor 1Bγ (eEF1Bγ) protein, a member of the GST superfamily. No significant difference in GST-specific activity and kinetic constants were observed between mycelial and yeast forms, indicating that eEF1Bγ protein did not show differential expression between the two phases.
    Folia Microbiologica 08/2013; 59(2). DOI:10.1007/s12223-013-0273-3 · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary open angle glaucoma (POAG) is one of the main causes of irreversible blindness worldwide. The pathogenesis of POAG is still unclear. Alteration and sclerosis of trabecular meshwork with changes in aqueous humor molecular composition seem to play the key role. Increased intraocular pressure is widely known to be the main risk factor for the onset and progression of the disease. Unfortunately, the early diagnosis of POAG still remains the main challenge. In order to provide insight into the patho-physiology of glaucoma, here we report a shotgun proteomics approach to tears of patients with POAG naïve to therapy. Our proteomics results showed 27 differential tear proteins in POAG vs. CTRL comparison (25 up regulated proteins in the POAG group and two unique proteins in the CTRL group), 16 of which were associated with inflammatory response, free radical scavenging, cell-to-cell signaling and interaction. Overall the protein modulation shown in POAG tears proves the involvement of biochemical networks linked to inflammation. Among all regulated proteins, a sub-group of 12 up-regulated proteins in naïve POAG patients were found to be down-regulated in medically controlled POAG patients treated with prostanoid analogues (PGA), as reported in our previous work (i.e., lipocalin-1, lysozyme C, lactotransferrin, proline-rich-protein 4, prolactin-inducible protein, zinc-alpha-2-glycoprotein, polymeric immunoglobulin receptor, cystatin S, Ig kappa chain C region, Ig alpha-2 chain C region, immunoglobulin J chain, Ig alpha-1 chain C region). In summary, our findings indicate that the POAG tears protein expression is a mixture of increased inflammatory proteins that could be potential biomarkers of the disease, and their regulation may be involved in the mechanism by which PGA are able to decrease the intraocular pressure in glaucoma patients.
    Molecular BioSystems 04/2013; 9(6). DOI:10.1039/c3mb25463a · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transthyretin (TTR) is an homotetrameric protein of the Central Nervous System (CNS) that plays the role of the major Thyroxine (T4) carrier from blood to Cerebrospinal Fluid (CSF). T4 physiologically helps oligodendrocyte precursor cells to turn into myelinating oligodendrocytes, enhancing remyelination after myelin sheet damage. We investigated post-translational oxidative modifications of serum and CSF TTR in Multiple Sclerosis (MS) subjects, highlighting high levels of S-sulfhydration and S-sulfonation of cysteine in position ten only in the cerebral TTR, which correlate with an anomalous TTR protein folding as well as with disease duration. Moreover we found low levels of free T4 in CSF of MS patients, suggestive of a potential role of these modifications on T4 transport into the brain.
    Proteomics 03/2013; 13(6). DOI:10.1002/pmic.201200395 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelial to mesenchymal transition (EMT) is a cellular program associated with the organ morphogenesis but also with the disease progression. EMT in the cancer field fuels neoplastic progression promoting the resistance to cell death, the resistance to chemotherapy and the acquisition of stem cell properties. Considering the crucial role of EMT in breast cancer metastasis, a better understanding of this process may provide new therapeutic options. Here, by using a proteomic approach we identified a set of proteins differentially expressed between an epithelial and a mesenchymal breast cancer cell line. The protein-protein network of these identified proteins was determined by an in silico analysis highlighting, in the EMT program, the role of proteins involved in cell adhesion, migration, and invasion, together with protein kinases involved in proliferation and survival, with many of these emerging as possible targets of novel biological agents. Finally, the pharmacological inhibition of some of these kinases was able to reverse the mesenchymal phenotype to an epithelial phenotype.
    Molecular BioSystems 12/2012; 9(6). DOI:10.1039/c2mb25401h · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytochemicals constitute a heterogeneous group of substances with an evident role in human health. Their properties on cancer initiation, promotion and progression are well documented. Particular attention is now devoted to better understand the molecular basis of their anticancer action. In the present work, we studied the effect of resveratrol on the ovarian cancer cell line OVCAR-3 by a proteomic approach. Our findings demonstrate that resveratrol down-regulates the protein cyclin D1 and, in a concentration dependent manner, the phosphorylation levels of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β). The dephosphorylation of these kinases could be responsible for the decreased cyclin D1 levels observed after treatment. We also showed that resveratrol reduces phosphorylation levels of the extracellular signal-regulated kinase (ERK) 1/2. Chemical inhibitors of phosphatidylinositol 3-kinase (PI3K) and ERK both increased the in vitro therapeutic efficacy of resveratrol. Moreover, resveratrol had an inhibitory effect on the AKT phosphorylation in cultured cells derived from the ascites of ovarian cancer patients and in a panel of human cancer cell lines. Thus, resveratrol shows antitumor activity in human ovarian cancer cell lines targeting signalling pathway involved in cell proliferation and drug-resistance.
    Molecular BioSystems 04/2012; 8(4):1078-87. DOI:10.1039/c2mb05486h · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urinary exosomes are released from every renal epithelial cell type facing the urinary space and therefore, they may carry molecular markers of renal dysfunction and structural injury. Here, we present a hyphenated microLC-Q-TOF-MS platform for lipidomics studies applied to investigate the urinary exosome lipid repertoire. Lipids were separated by reversed-phase chromatography using a linear gradient of formic acid 0.2% and tetrahydrofuran, in 40 min of analysis. Features (m/z with associated own retention time) were extracted by MarkerLynx(TM) (Waters) and processed, demonstrating good analytical performance in terms of repeatability and mass accuracy of the microLC Q-TOF MS platform. In particular, a stable retention time (RSD less than 4%) and relative intensity (RSD from 2.9% to 11%) were observed. Moreover, the method takes advantages by the use of a lock spray interface (Waters) that allows readjusting the m/z data after acquisition, obtaining inaccuracy below 6 ppm in measuring the m/z value of the reference compound during chromatographic run. The method was employed in a preliminary application to perform comparative analysis from healthy control subjects and renal cell carcinoma (RCC) patients, in order to possibly highlight differences in lipid composition to be exploited as potential tumor biomarker. Differential lipid composition in RCC urinary exosomes was achieved and tentatively identified by accurate mass, providing a preliminary indication of a relationship between lipid composition of urinary exosomes and RCC disease. Among the total features significantly different in RCC exosomes, the ion at m/z 502.3 was taken as an example for molecular confirmation by MS/MS fragmentation analysis.
    Electrophoresis 02/2012; 33(4):689-96. DOI:10.1002/elps.201100375 · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary open angle (POAG) and pseudoexfoliative glaucoma (PXG) are the most common primary and secondary forms of glaucoma, respectively. Even though the patho-physiology, aqueous humor composition, risk factors, clinical features, therapy and drug induced ocular surface changes in POAG and PXG have been widely studied, to date information concerning tear protein characterization is lacking. Tears are a source of nourishment for ocular surface tissues and a vehicle to remove local waste products, metabolized drugs and inflammatory mediators produced in several ophthalmic diseases. In glaucoma, the proteomic definition of tears may provide insights concerning patho-physiology of the disease and ocular surface modifications induced by topical therapy. Our study aimed at characterizing protein patterns in tears of patients with medically controlled POAG and PXG. A comparative tears proteomic analysis by label-free LC-MS(E) highlighted differences in the expression of several proteins in the two glaucoma sub-types and control subjects, highlighting inflammation pathways expressed in both diseases. Results were independently reconfirmed by SDS-PAGE and linear MALDI-TOF MS, validating altered levels of Lysozyme C, Lipocalin-1, Protein S100, Immunoglobulins and Prolactin Inducible Protein. Moreover, we found a differential pattern of phosphorylated Cystatin-S that distinguishes the two pathologies. The most relevant results suggest that in both pathologies there may be active inflammation pathways related to the disease and/or induced by therapy. We show, for the first time, tear protein patterns expressed under controlled intraocular pressure conditions in POAG and PXG subjects. These findings could help in the understanding of molecular machinery underlying these ophthalmologic diseases, resulting in early diagnosis and more specific therapy.
    Molecular BioSystems 11/2011; 8(4):1017-28. DOI:10.1039/c1mb05357d · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple Sclerosis (MS) is a neurodegenerative autoimmune demyelinating disease affecting young adults. The aetiology still remains a mystery and diagnosis is impaired by the lack of defined molecular markers. Autoimmune response remains the main topic under investigation and recent studies suggest additional non-proteic mediators of brain inflammation such as lipids. We carried out an LC-MS based lipidomics approach to highlight serum lipids profiling in MS. Method was optimised and applied in a preliminary clinical cross-sectional investigation of MS patients vs Healthy Controls (HC) and patients with Other Neurological Diseases (OND). Ten significant metabolites were highlighted and tentatively identified by accurate mass and MS/MS experiments. Our most relevant data show altered level of lyso-glycerophosphatidylcholine (lysoPC) and glycerophosphatidylcholine (PC) species. Total lysoPC/PC ratio showed significant decrease in pathological groups (MS, OND) and, in addition, MS subjects had a relevant decrease of this ratio also in respect to OND. These findings suggest that there may be an altered phospholipid metabolism in MS that can be evaluated in serum. Some of these features are distinctive and may be considered specific for MS. Our lipidomics data show, for the first time, evidence in serum of a relationship between LysoPC/PC ratio and MS.
    Journal of proteomics 07/2011; 74(12):2826-36. DOI:10.1016/j.jprot.2011.06.023 · 3.93 Impact Factor
  • SIE Annual conference, Montesilvano (PE), Italy; 05/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: The exposure of the aminophospholipid phosphatidylserine on the external leaflet of red blood cell plasma membrane can have several pathophysiological consequences with particular regard to the processes of cell phagocytosis, haemostasis and cell-cell interaction. A significant increase in phosphatidylserine-exposing erythrocytes has been reported in chronic haemodialysis patients and found to be strongly influenced by the uraemic milieu. To identify uraemic compound(s) enhancing phosphatidylserine externalization in erythrocytes, we fractionated by chromatographic methods the ultrafiltrate obtained during dialysis, and examined by flow cytometry the effect of the resulting fractions on phosphatidylserine exposure in human red cells. Chromatographic procedures disclosed a homogeneous fraction able to increase erythrocyte phosphatidylserine exposure. The inducer of such externalization was identified by monodimensional gel electrophoresis and mass spectrometry investigations as beta2-microglobulin. To confirm the beta2-microglobulin effect and to examine the influence of protein glycation (as it occurs in uraemia) on phosphatidylserine erythrocyte exposure, erythrocytes from normal subjects were incubated with recombinant beta2-microglobulin (showing no glycation sites at mass analysis), commercial beta2-microglobulin (8 glycation sites), or with in vitro glycated recombinant beta2-microglobulin (showing multiple glycation sites). Elevated concentrations of beta2-microglobulin (corresponding to plasma levels reached in dialysis patients) increased slightly but significantly the protein's ability to externalize phosphatidylserine on human erythrocytes. Such an effect was markedly enhanced by glycated forms of the protein. Beta2-microglobulin is recognized as a surrogate marker of middle-molecule uraemic toxins and represents a key component of dialysis-associated amyloidosis. Our study adds further evidence to the potential pathophysiologic consequences of beta2-microglobulin accumulation in chronic uraemic patients.
    Molecular BioSystems 03/2011; 7(3):651-8. DOI:10.1039/c0mb00137f · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been difficult to replicate consistently the experimental model of axonal Guillain-Barré syndrome (GBS). We immunized rabbits with two lipo-oligosaccharides (LOS1 and LOS2) derived from the same C. jejuni strain and purified in a slightly different way. LOS1 did not contain proteins whereas several proteins were present in LOS2. In spite of a robust anti-GM1 antibody response in all animals the neuropathy developed only in rabbits immunized with LOS1. To explain this discrepancy we investigated fine specificity, affinity and ability to activate the complement of anti-GM1 antibodies. Only rabbits immunized with LOS1 showed monospecific high-affinity antibodies which activated more effectively the complement. Although it is not well understood how monospecific high-affinity antibodies are induced these are crucial for the induction of experimental axonal neuropathy. Only a strict adherence to the protocols demonstrated to be successful may guarantee the reproducibility and increase the confidence in the animal model as a reliable tool for the study of the human axonal GBS.
    Journal of the neurological sciences 04/2010; 293(1-2):76-81. DOI:10.1016/j.jns.2010.03.003 · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf.
    Journal of proteomics 11/2009; 73(3):562-70. DOI:10.1016/j.jprot.2009.11.004 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serum proteome investigations have raised an incredible interest in the research of novel molecular biomarker, nevertheless few of the proposed evidences have been translated to the clinical practice. One of the limiting factors has been the lack of generally accepted guidelines for clinical proteomics studies and the lack of a robust analytical and pre-analytical ground for the proposed classification models. Pre-analytical issues may results in a deep impact for biomarker discovery campaign. In this study we present a systematic evaluation of sample storage and sampling conditions for clinical proteomics investigations. We have developed and validated a linear MALDI-TOF-MS protein profiling method to explore the low protein molecular weight region (5-20 kDa) of serum samples. Data normalization and processing was performed using optimise peak detection routine (LIMPIC) able to describe each group under investigation. Data were acquired either from healthy volunteers and from multiple sclerosis patients in order to highlight ex vivo protein profile alteration related to different physio-pathological conditions. Our data showed critical conditions for serum protein profiles depending on storage times and temperatures: 23 degrees C, 4 degrees C, -20 degrees C and -80 degrees C. We demonstrated that upon a -20 degrees C short term storage, characteristic degradation profiles are associated with different clinical groups. Protein signals were further identified after preparative HPLC separation by peptide sequencing on a nanoLC-Q-TOF TANDEM mass spectrometer. Apolipoprotein A-IV and complement C3 protein fragments, transthyretin and the oxidized isoforms in different apolipoprotein species represent the major molecular features of such a degradation pattern.
    Journal of proteomics 09/2009; 73(3):579-92. DOI:10.1016/j.jprot.2009.07.014 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer is the leading cause of gynaecological cancer mortality. Paclitaxel is used in the first line treatment of ovarian cancer, but acquired resistance represents the most important clinical problem and a major obstacle to a successful therapy. Several mechanisms have been implicated in paclitaxel resistance, however this process has not yet been fully explained. To better understand molecular resistance mechanisms, a comparative proteomic approach was undertaken on the human epithelial ovarian cancer cell lines A2780 (paclitaxel sensitive), A2780TC1 and OVCAR3 (acquired and inherently resistant). Proteins associated with chemoresistance process were identified by DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS). Out of the 172 differentially expressed proteins in pairwise comparisons among the three cell lines, 151 were identified and grouped into ten main functional classes. Most of the proteins were related to the category of stress response (24%), metabolism (22%), protein biosynthesis (15%) and cell cycle and apoptosis (11%), suggesting that alterations of those processes might be involved in paclitaxel resistance mechanisms. This is the first direct proteomic comparison of paclitaxel sensitive and resistant ovarian cancer cells and may be useful for further studies of resistance mechanisms and screening of resistance biomarkers for the development of tailored therapeutic strategies.
    Biochimica et Biophysica Acta 11/2008; 1794(2):225-36. DOI:10.1016/j.bbapap.2008.09.017 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione transferases (GSTs) constitute a class of detoxifying enzymes involved in Phase II metabolism. Using GSH-affinity chromatografy followed by HPLC analysis, two GST isoforms were isolated from the Anguilla anguilla liver cytosol. The major GST belongs to the piscine-specific rho class and accounted for about 59% of total GST affinity eluted fraction, while the remaining 41% was represented by a Pi class GST. Both isoforms were cloned, heterologously expressed in Escherichia coli and their enzyme activities were characterized with respect to a broad spectrum of well-known GST substrates. Our data indicate that only a fraction of prototypical GST substrates are conjugated by these enzymes and that Pi class GST has higher specific activity than rho class GST against 1-chloro-2,4-dinitrobenzene (CDNB), ethracrynic acid, 4-nitroquinoline-1-oxide and p-nitrophenyl acetate while trans-2-nonenal is detoxified more efficiently by rho class GST. Analysis of the kinetics parameters of the conjugation against CDNB indicated that the utilization ratio K(cat)/K(m) is slightly higher for rho class GST with respect to pi class GSTs. Finally, to determine the potential for environmental inhibition of the GST isoforms, we examined the effect of the widely used herbicide atrazine as an inhibitor of catalytic activity. The inhibition studies revealed that atrazine was an effective inhibitor of GST-CDNB catalytic activities of both isoforms at micromolar concentrations, suggesting the sensitivity of these isoforms to pesticide inhibition at environmentally relevant concentrations.
    Aquatic toxicology (Amsterdam, Netherlands) 09/2008; 90(1):48-57. DOI:10.1016/j.aquatox.2008.07.015 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteinuria is the hallmark of renal diseases and the characterization of the urinary protein composition may become an important source of information for diagnosis and research. So far, protein analysis in urine has been utilized for a generic individuation of site-specific defects (glomerular vs. tubular) but there is a need for an extension of proteomics to specific urinary biomarkers in selected clinical conditions. The identification of fragments of proteins in plasma and urine may increase the spectrum of urinary biomarkers. The unique speculative application so far proposed for protein fragments is nephrotic syndrome, and specifically focal segmental glomerulosclerosis, in which case they reflect intrinsic proteolysis occurring in plasma and represent surrogate biomarkers of the disease activity. Albumin is probably the most studied protein. Several of the albumin fragments present a peculiar distribution of the fingerprint peptide pattern containing both the N-terminal region and the C-terminal domain with a complete lack of any MS signals for the internal sequence region. Their characterization utilizing new strategies based on 2-D nondenaturing electrophoresis is now in progress. Studies on a direct characterization of proteases in plasma and urine will also define the participation of proteases to the genesis of renal diseases.
    PROTEOMICS - CLINICAL APPLICATIONS 07/2008; 2(7‐8):956 - 963. DOI:10.1002/prca.200780157 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 2-DE system has been devised in which proteins are first separated in their native state followed by separation according to mass under denaturing conditions (Nat/SDS-PAGE). Hydrophilic properties of the gel and the presence of dihydroxybisacrylamide in the first dimension allowed a good resolution for high-molecular-weight proteins and maintained interactions. With this method 252 plasma spots have been resolved and 140 have been characterized by MS as isoforms of 60 proteins, a relevant part of which (12) were not detected by traditional 2-D gels or by other nondenaturing 2-D techniques. The list includes complement factors (C4d, C7), coagulation factors (coagulation factor II, fibrin beta), apolipoproteins (apolipoprotein B) and cell debris (vinculin, gelsolin, tropomyosin, dystrobrevin beta, fibrinectin I). Nat/SDS PAGE also allowed separation of nicked forms of albumin, Apo B100 and alpha2-macroglobulin and showed the presence of atypical albumin adducts corresponding to post-translational and oxidation products. Our system provides therefore new tools for resolving proteins, protein aggregates and complexes and amplifies the potentiality of traditional electrophoretic analysis.
    Electrophoresis 02/2008; 29(3):682-94. DOI:10.1002/elps.200700537 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leber's hereditary optic neuropathy (LHON) is a genetic disease leading to the loss of central vision and optic nerve atrophy. The existence of occasional cases of LHON patients developing a Multiple Sclerosis (MS)-like illness and the hypothesis that mtDNA variants may be involved in MS suggest the possibility of some common molecular mechanisms linking the two diseases. We have pursued a comparative proteomics approach on cerebrospinal fluid (CSF) samples from LHON and MS patients, as well as healthy donors by employing 2-DE gel separations coupled to MALDI-TOF-MS and nLC-MS/MS investigations. 7 protein spots showed significant differential distribution among the three groups. Both CSF of LHON or MS patients are characterized by lower level of transthyretin dimer adduct while a specific up regulation of Apo A-IV was detected in LHON CSF.
    Journal of Neuroimmunology 02/2008; 193(1-2):156-60. DOI:10.1016/j.jneuroim.2007.10.004 · 2.79 Impact Factor

Publication Stats

716 Citations
141.28 Total Impact Points

Institutions

  • 2005–2013
    • Università degli Studi G. d'Annunzio Chieti e Pescara
      • • Center for Aging Sciences CESI
      • • Department of Neuroscience & Imaging
      • • Dipartimento di Scienze Biomediche
      Chieta, Abruzzo, Italy
  • 2007
    • Foundation Santa Lucia
      Roma, Latium, Italy
  • 2006–2007
    • University of Rome Tor Vergata
      Roma, Latium, Italy
    • Università degli Studi di Brescia
      Brescia, Lombardy, Italy
  • 2003–2004
    • Mario Negri Institute for Pharmacological Research
      Milano, Lombardy, Italy
    • Università degli Studi dell'Aquila
      • Department of Chemistry, Chemical Engineering and Materials
      Aquila, Abruzzo, Italy