Jonathan Gilley

Babraham Institute, Cambridge, England, United Kingdom

Are you Jonathan Gilley?

Claim your profile

Publications (20)142.2 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons, providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866 and the axon protective protein Wld(S) prevent this rise. These data indicate that the mechanism by which NMNAT and the related Wld(S) protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies.Cell Death and Differentiation advance online publication, 17 October 2014; doi:10.1038/cdd.2014.164.
    Cell death and differentiation. 10/2014;
  • Source
    Laura Conforti, Jonathan Gilley, Michael P Coleman
    [Show abstract] [Hide abstract]
    ABSTRACT: Axon degeneration is a prominent early feature of most neurodegenerative disorders and can also be induced directly by nerve injury in a process known as Wallerian degeneration. The discovery of genetic mutations that delay Wallerian degeneration has provided insight into mechanisms underlying axon degeneration in disease. Rapid Wallerian degeneration requires the pro-degenerative molecules SARM1 and PHR1. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is essential for axon growth and survival. Its loss from injured axons may activate Wallerian degeneration, whereas NMNAT overexpression rescues axons from degeneration. Here, we discuss the roles of these and other proposed regulators of Wallerian degeneration, new opportunities for understanding disease mechanisms and intriguing links between Wallerian degeneration, innate immunity, synaptic growth and cell death.
    Nature reviews. Neuroscience 05/2014; 15(6):394-409. · 31.38 Impact Factor
  • Source
    Stefan Milde, Jonathan Gilley, Michael P Coleman
    [Show abstract] [Hide abstract]
    ABSTRACT: The NAD-synthesizing enzyme NMNAT2 is critical for axon survival in primary culture and its depletion may contribute to axon degeneration in a variety of neurodegenerative disorders. Here we discuss several recent reports from our laboratory that establish a critical role for NMNAT2 in axon growth in vivo in mice and shed light on the delivery and turnover of this survival factor in axons. In the absence of NMNAT2, axons fail to extend more than a short distance beyond the cell body during embryonic development, implying a requirement for NMNAT2 in axon maintenance even during development. Furthermore, we highlight findings regarding the bidirectional trafficking of NMNAT2 in axons on a vesicle population that undergoes fast axonal transport in primary culture neurites and in mouse sciatic nerve axons in vivo. Surprisingly, loss of vesicle association boosts the axon protective capacity of NMNAT2, an effect that is at least partially mediated by a longer protein half-life of cytosolic NMNAT2 variants. Analysis of wild-type and variant NMNAT2 in mouse sciatic nerves and Drosophila olfactory receptor neuron axons supports the existence of a similar mechanism in vivo, highlighting the potential for regulation of NMNAT2 stability and turnover as a mechanism to modulate axon degeneration in vivo.
    Bioarchitecture. 11/2013; 3(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: NMNAT2 is an NAD(+)-synthesizing enzyme with an essential axon maintenance role in primary culture neurons. We have generated an Nmnat2 gene trap mouse to examine the role of NMNAT2 in vivo. Homozygotes die perinatally with a severe peripheral nerve/axon defect and truncated axons in the optic nerve and other CNS regions. The cause appears to be limited axon extension, rather than dying-back degeneration of existing axons, which was previously proposed for the NMNAT2-deficient Blad mutant mouse. Neurite outgrowth in both PNS and CNS neuronal cultures consistently stalls at 1-2 mm, similar to the length of truncated axons in the embryos. Crucially, this suggests an essential role for NMNAT2 during axon growth. In addition, we show that the Wallerian degeneration slow protein (Wld(S)), a more stable, aberrant NMNAT that can substitute the axon maintenance function of NMNAT2 in primary cultures, can also correct developmental defects associated with NMNAT2 deficiency. This is dose-dependent, with extension of life span to at least 3 months by homozygous levels of Wld(S) the most obvious manifestation. Finally, we propose that endogenous mechanisms also compensate for otherwise limiting levels of NMNAT2. This could explain our finding that conditional silencing of a single Nmnat2 allele triggers substantial degeneration of established neurites, whereas similar, or greater, reduction of NMNAT2 in constitutively depleted neurons is compatible with normal axon growth and survival. A requirement for NMNAT2 for both axon growth and maintenance suggests that reduced levels could impair axon regeneration as well as axon survival in aging and disease.
    Journal of Neuroscience 08/2013; 33(33):13410-24. · 6.91 Impact Factor
  • Source
    Stefan Milde, Jonathan Gilley, Michael P Coleman
    [Show abstract] [Hide abstract]
    ABSTRACT: Axons require a constant supply of the labile axon survival factor Nmnat2 from their cell bodies to avoid spontaneous axon degeneration. Here we investigate the mechanism of fast axonal transport of Nmnat2 and its site of action for axon maintenance. Using dual-colour live-cell imaging of axonal transport in SCG primary culture neurons, we find that Nmnat2 is bidirectionally trafficked in axons together with markers of the trans-Golgi network and synaptic vesicles. In contrast, there is little co-migration with mitochondria, lysosomes, and active zone precursor vesicles. Residues encoded by the small, centrally located exon 6 are necessary and sufficient for stable membrane association and vesicular axonal transport of Nmnat2. Within this sequence, a double cysteine palmitoylation motif shared with GAP43 and surrounding basic residues are all required for efficient palmitoylation and stable association with axonal transport vesicles. Interestingly, however, disrupting this membrane association increases the ability of axonally localized Nmnat2 to preserve transected neurites in primary culture, while re-targeting the strongly protective cytosolic mutants back to membranes abolishes this increase. Larger deletions within the central domain including exon 6 further enhance Nmnat2 axon protective capacity to levels that exceed that of the slow Wallerian degeneration protein, Wld(S). The mechanism underlying the increase in axon protection appears to involve an increased half-life of the cytosolic forms, suggesting a role for palmitoylation and membrane attachment in Nmnat2 turnover. We conclude that Nmnat2 activity supports axon survival through a site of action distinct from Nmnat2 transport vesicles and that protein stability, a key determinant of axon protection, is enhanced by mutations that disrupt palmitoylation and dissociate Nmnat2 from these vesicles.
    PLoS Biology 04/2013; 11(4):e1001539. · 12.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wallerian degeneration is delayed when sufficient levels of proteins with NMNAT activity are maintained within axons after injury. This has been proposed to form the basis of 'slow Wallerian degeneration' (Wld (S)), a neuroprotective phenotype conferred by an aberrant fusion protein, Wld(S). Proteasome inhibition also delays Wallerian degeneration, although much less robustly, with stabilization of NMNAT2 likely to play a key role in this mechanism. The pan-MEK inhibitor U0126 has previously been shown to reverse the axon-protective effects of proteasome inhibition, suggesting that MEK-ERK signaling plays a role in delayed Wallerian degeneration, in addition to its established role in promoting neuronal survival. Here we show that whilst U0126 can also reverse Wld(S)-mediated axon protection, more specific inhibitors of MEK1/2 and MEK5, PD184352 and BIX02189, have no significant effect on the delay to Wallerian degeneration in either situation, whether used alone or in combination. This suggests that an off-target effect of U0126 is responsible for reversion of the axon protective effects of Wld(S) expression or proteasome inhibition, rather than inhibition of MEK1/2-ERK1/2 or MEK5-ERK5 signaling. Importantly, this off-target effect does not appear to result in alterations in the stabilities of either Wld(S) or NMNAT2.
    PLoS ONE 01/2013; 8(10):e76505. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder). Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2). Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad) mutants. Examination of the brains of E18.5 Nmnat2(blad/blad) mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad) homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG). In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle) are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.
    PLoS ONE 01/2012; 7(10):e47869. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considering the many differences between mice and humans, it is perhaps surprising how well mice model late-onset human neurodegenerative disease. Models of Alzheimer's disease, frontotemporal dementia, Parkinson's disease and Huntington's disease show some striking similarities to the corresponding human pathologies in terms of axonal transport disruption, protein aggregation, synapse loss and some behavioural phenotypes. However, there are also major differences. To extrapolate from mouse models to human disease, we need to understand how these differences relate to intrinsic limitations of the mouse system and to the effects of transgene overexpression. In the present paper, we use examples from an amyloid-overexpression model and a mutant-tau-knockin model to illustrate what we learn from each type of approach and what the limitations are. Finally, we discuss the further contributions that knockin and similar approaches can make to understanding pathogenesis and how best to model disorders of aging in a short-lived mammal.
    Biochemical Society Transactions 08/2011; 39(4):933-8. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tauopathies are characterized by hyperphosphorylation of the microtubule-associated protein tau and its accumulation into fibrillar aggregates. Toxic effects of aggregated tau and/or dysfunction of soluble tau could both contribute to neural defects in these neurodegenerative diseases. We have generated a novel knockin mouse model of an inherited tauopathy, frontotemporal dementia with parkinsonism linked to tau mutations on chromosome 17 (FTDP-17T). We incorporated a single mutation, homologous to the common FTDP-17T P301L mutation, directly into the endogenous mouse gene, mimicking the human disease situation. These mice express P301L-equivalent mutant tau at normal physiological levels from the knockin allele. Importantly, in contrast to existing transgenic mouse models that overexpress human P301L mutant tau, no overt tau pathology developed during the normal lifespan of the knockin mice. In fact, overall phosphorylation of tau was reduced, perhaps due to reduced microtubule binding. However, homozygous knockin mice did display intriguing age-dependent changes in axonal transport of mitochondria, and increased spontaneous locomotor activity in old age. These could represent early consequences of the tau dysfunction that eventually precipitates pathogenesis in humans.
    Neurobiology of aging 04/2011; 33(3):621.e1-621.e15. · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons.
    BMC Neuroscience 01/2011; 12:69. · 3.00 Impact Factor
  • Simon Andrews, Jonathan Gilley, Michael P Coleman
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of axonal transport are critical, not only to understand its normal regulation, but also to determine the roles of transport impairment in disease. Exciting new resources have recently become available allowing live imaging of axonal transport in physiologically relevant settings, such as mammalian nerves. Thus the effects of disease, ageing and therapies can now be assessed directly in nervous system tissue. However, these imaging studies present new challenges. Manual or semi-automated analysis of the range of transport parameters required for a suitably complete evaluation is very time-consuming and can be subjective due to the complexity of the particle movements in axons in ex vivo explants or in vivo. We have developed Difference Tracker, a program combining two new plugins for the ImageJ image-analysis freeware, to provide fast, fully automated and objective analysis of a number of relevant measures of trafficking of fluorescently labeled particles so that axonal transport in different situations can be easily compared. We confirm that Difference Tracker can accurately track moving particles in highly simplified, artificial simulations. It can also identify and track multiple motile fluorescently labeled mitochondria simultaneously in time-lapse image stacks from live imaging of tibial nerve axons, reporting values for a number of parameters that are comparable to those obtained through manual analysis of the same axons. Difference Tracker therefore represents a useful free resource for the comparative analysis of axonal transport under different conditions, and could potentially be used and developed further in many other studies requiring quantification of particle movements.
    Journal of neuroscience methods 11/2010; 193(2):281-7. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.
    Journal of Neuroscience 10/2010; 30(40):13291-304. · 6.91 Impact Factor
  • Source
    Jonathan Gilley, Michael P Coleman
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular triggers for axon degeneration remain unknown. We identify endogenous Nmnat2 as a labile axon survival factor whose constant replenishment by anterograde axonal transport is a limiting factor for axon survival. Specific depletion of Nmnat2 is sufficient to induce Wallerian-like degeneration of uninjured axons which endogenous Nmnat1 and Nmnat3 cannot prevent. Nmnat2 is by far the most labile Nmnat isoform and is depleted in distal stumps of injured neurites before Wallerian degeneration begins. Nmnat2 turnover is equally rapid in injured Wld(S) neurites, despite delayed neurite degeneration, showing it is not a consequence of degeneration and also that Wld(S) does not stabilize Nmnat2. Depletion of Nmnat2 below a threshold level is necessary for axon degeneration since exogenous Nmnat2 can protect injured neurites when expressed at high enough levels to overcome its short half-life. Furthermore, proteasome inhibition slows both Nmnat2 turnover and neurite degeneration. We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related Wld(S) protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders.
    PLoS Biology 01/2010; 8(1):e1000300. · 12.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The death of sympathetic neurons after nerve growth factor (NGF) withdrawal requires de novo gene expression. Dp5 was one of the first NGF withdrawal-induced genes to be identified and it encodes a proapoptotic BH3-only member of the Bcl-2 family. To study how dp5 transcription is regulated by NGF withdrawal we cloned the regulatory regions of the rat dp5 gene and constructed a series of dp5-luciferase reporter plasmids. In microinjection experiments with sympathetic neurons we found that three regions of dp5 contribute to its induction after NGF withdrawal: the promoter, a conserved region in the single intron, and sequences in the 3' untranslated region of the dp5 mRNA. A construct containing all three regions is efficiently activated by NGF withdrawal and, like the endogenous dp5, its induction requires mixed-lineage kinase (MLK) and c-Jun N-terminal kinase (JNK) activity. JNKs phosphorylate the AP-1 transcription factor c-Jun, and thereby increase its activity. We identified a conserved ATF site in the dp5 promoter that binds c-Jun and ATF2, which is critical for dp5 promoter induction after NGF withdrawal. These results suggest that part of the mechanism by which the MLK-JNK-c-Jun pathway promotes neuronal apoptosis is by activating the transcription of the dp5 gene.
    Nucleic Acids Research 04/2009; 37(9):3044-60. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration.
    The Journal of Cell Biology 03/2009; 184(4):491-500. · 10.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in amyloid precursor protein (APP), tau and apolipoprotein E4 (ApoE4) lead to Alzheimer's disease (AD) or related pathologies. Pathogenesis and interactions between these pathways have been studied in mouse models. Here, we highlight the fact that axons are important sites of cellular pathology in each pathway and propose that pathway convergence at the molecular level might occur in axons. Recent developments suggest that axonal transport of APP influences beta-amyloid deposition and that tau regulates axonal transport. ApoE4 influences both axonal tau phosphorylation and amyloid-induced neurite pathology. Thus, a better understanding of axonal events in AD might help connect the pathogenic mechanisms of beta-amyloid, ApoE4 and tau, indicating the most important steps for therapeutic targeting.
    Trends in Molecular Medicine 05/2007; 13(4):135-42. · 9.57 Impact Factor
  • Jonathan Gilley, Jonathan Ham
    [Show abstract] [Hide abstract]
    ABSTRACT: The BH3-only protein Bim is induced following NGF deprivation in developing sympathetic neurons and contributes to their death by apoptosis. The regulation of Bim activity is complex, and involves both transcriptional and posttranslational mechanisms. We have previously shown that both the FOXO subfamily of Forkhead transcription factors and the JNK/c-Jun pathway contribute to the transcriptional induction of Bim expression and subsequent apoptosis of sympathetic neurons following NGF deprivation. Bim activity can also be modulated by JNK-mediated phosphorylation after NGF deprivation in these cells. Here, we provide evidence for additional complexity in the transcriptional and translational control of Bim expression. We show that the first intron of the bim gene contains elements with silencer and enhancer properties that can modulate the basal activity and NGF deprivation-induced activity of the previously characterized bim promoter. Surprisingly, we find that some of the elements responsible for these effects are linked to two novel, alternative promoters located towards the 3' end of the intron that have minimal, or no activity in sympathetic neurons. Finally, we provide evidence that Bim expression is reduced in sympathetic neurons by the presence of an upstream open reading frame in the 5' leader of bim transcripts.
    DNA and Cell Biology 10/2005; 24(9):563-73. · 2.34 Impact Factor
  • Source
    Cell Death and Differentiation 09/2005; 12(8):1015-20. · 8.37 Impact Factor
  • Source
    Jonathan Gilley, Paul J Coffer, Jonathan Ham
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing sympathetic neurons die by apoptosis when deprived of NGF. BIM, a BH3-only member of the BCL-2 family, is induced after NGF withdrawal in these cells and contributes to NGF withdrawal-induced death. Here, we have investigated the involvement of the Forkhead box, class O (FOXO) subfamily of Forkhead transcription factors in the regulation of BIM expression by NGF. We find that overexpression of FOXO transcription factors induces BIM expression and promotes death of sympathetic neurons in a BIM-dependent manner. In addition, we find that FKHRL1 (FOXO3a) directly activates the bim promoter via two conserved FOXO binding sites and that mutation of these sites abolishes bim promoter activation after NGF withdrawal. Finally, we show that FOXO activity contributes to the NGF deprivation-induced death of sympathetic neurons.
    The Journal of Cell Biology 09/2003; 162(4):613-22. · 10.82 Impact Factor

Publication Stats

628 Citations
142.20 Total Impact Points

Institutions

  • 2007–2014
    • Babraham Institute
      Cambridge, England, United Kingdom
  • 2013
    • University of Texas Southwestern Medical Center
      Dallas, Texas, United States
  • 2003–2011
    • University College London
      • Institute of Child Health
      London, ENG, United Kingdom