Joanna Rogalska

Medical University of Bialystok, Belostok, Podlasie, Poland

Are you Joanna Rogalska?

Claim your profile

Publications (12)30.16 Total impact

  • Malgorzata M Brzóska, Joanna Rogalska
    [Show abstract] [Hide abstract]
    ABSTRACT: It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system.
    Toxicology and Applied Pharmacology 05/2013; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the influence of chlorfenvinphos (0.3mg/kg bw/24h corresponding to 0.02 LD(50); orally by gastric gavage for 14 and 28 days) on lipid metabolism, and apoptotic and necrotic cells death in the brain of rats as the possible mechanism of neurotoxic action of organophosphate (OP) pesticides at low exposure. Total cholesterol (TCh), triglycerides (TG), phospholipids (PL), and free fatty acids (FFA) were determined and apoptotic, necrotic, and living cells were quantified in the brain. Moreover, the serum and brain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were assayed as biomarkers of neurotoxicity. The treatment with chlorfenvinphos increased (duration dependently) the concentrations of TCh and TG and the ratio of TCh/PL, and decreased PL concentration. The prevalence of apoptotic and necrotic cells increased and that of the living brain cells depressed (by 10%) already after 14 days of the exposure. The brain activities of AChE and BChE decreased by 12% and 15%, and by 18% and 25% after 14 and 28 days, respectively, whereas the serum activities of these enzymes were inhibited (by 24% and 18%, respectively) only after the longer treatment. The changes in lipid metabolism and distribution of the living, apoptotic, and necrotic brain cells correlated with AChE and BChE activities in the serum and brain. The results show that chlorfenvinphos may disturb lipid metabolism and induce apoptosis and necrosis in the brain even at the exposure not affecting the serum activities of cholinesterases, and causing only moderate inhibition of their brain activities. Based on the findings it can be concluded that low repeated exposure to OP pesticides may influence the nervous system through disrupting the lipid profile of the nervous tissue and decreasing the number of the nervous cells.
    Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie 04/2012; · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was investigated whether the ability of zinc (Zn) to prevent cadmium (Cd)-induced lipid peroxidation may be connected with its impact on glutathione peroxidase (GPx) activity and selenium (Se) concentration. GPx and Se were determined in the serum, liver and kidney of the rats that received Cd (5 or 50 mg/L) or/and Zn (30 mg/L) in drinking water for 6 months in whose the protective Zn impact was noted (Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 2009;177:142-52). Moreover, dependences between these parameters, and indices of lipid peroxidation (F(2)-isoprostane, lipid peroxides, oxidized low density lipoprotein cholesterol) as well as concentrations of Cd and Zn were estimated. The supplementation with Zn during the exposure to 5 mg Cd/L entirely antagonized the Cd-induced increase in GPx activity and Se concentration in the liver and kidney, but not in the serum. Zn administration during the treatment with 50 mg Cd/L totally or partially prevented from the Cd-caused decrease in GPx activity and Se concentration in the serum, liver and kidney. At the higher level of Cd exposure, GPx activity in the serum and tissues positively correlated with Se concentration. Moreover, numerous correlations were noted between GPx and/or Se and the indices of lipid peroxidation. The results indicate that the protective impact of Zn against the Cd-induced lipid peroxidation during the relatively high exposure might be connected with its beneficial influence on Se concentration and GPx activity in the serum and tissues, whereas this bioelement influence at the moderate exposure seems to be independent of GPx and Se.
    Journal of Trace Elements in Medicine and Biology 11/2011; 26(1):46-52. · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was estimated, in a rat model of moderate and relatively high chronic human exposure to cadmium (Cd), whether enhanced zinc (Zn) consumption may prevent Cd-induced liver injury and if the possible protective effect of this bioelement depends on its intake. For this purpose, the structure and function of the liver of the rats that received Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months were evaluated. The treatment with Cd led to, dependent on the exposure level, pathological changes in the liver, including enhanced apoptosis and induction of inflammatory and necrotic processes. Moreover, the serum activities of hepatic marker enzymes (alanine transaminase and aspartate transaminase) and the concentration of proinflammatory cytokine - tumor necrosis factor α were increased. The supplementation with 30 and 60mg Zn/l (enhancing daily Zn intake by 79% and 151%, respectively) partially or totally prevented from some of the Cd-induced changes in the liver structure and function; however, it provided no protection from necrosis, and the administration of 60mg Zn/l during the higher Cd exposure even intensified this process. At both levels of Cd treatment, the use of 30mg Zn/l was more effective in preventing liver injury than that of 60mg Zn/l. The hepatoprotective impact of Zn may be explained, at least partly, by its antioxidative, antiapoptotic and anti-inflammatory action, ability to stimulate regenerative processes in the liver tissue, and indirect action resulting in a decrease in the liver pool of the non-metallothionein-bound Cd(2+) ions able to exert toxic action. The results provide strong evidence that enhanced Zn consumption may be beneficial in protection from Cd hepatotoxicity; however, its excessive intake at relatively high exposure to Cd may intensify liver injury.
    Chemico-biological interactions 05/2011; 193(3):191-203. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was investigated whether cadmium (Cd) may induce oxidative stress in the bone tissue in vivo and in this way contribute to skeleton damage. Total antioxidative status (TAS), antioxidative enzymes (glutathione peroxidase, superoxide dismutase, catalase), total oxidative status (TOS), hydrogen peroxide (H(2)O(2)), lipid peroxides (LPO), total thiol groups (TSH) and protein carbonyl groups (PC) as well as Cd in the bone tissue at the distal femoral epiphysis and femoral diaphysis of the male rats that received drinking water containing 0, 5, or 50mg Cd/l for 6 months were measured. Cd, depending on the level of exposure and bone location, decreased the bone antioxidative capacity and enhanced its oxidative status resulting in oxidative stress and oxidative protein and/or lipid modification. The treatment with 5 and 50mg Cd/l decreased TAS and activities of antioxidative enzymes as well as increased TOS and concentrations of H(2)O(2) and PC at the distal femur. Moreover, at the higher exposure, the concentration of LPO increased and that of TSH decreased. The Cd-induced changes in the oxidative/antioxidative balance of the femoral diaphysis, abundant in cortical bone, were less advanced than at the distal femur, where trabecular bone predominates. The results provide evidence that, even moderate, exposure to Cd induces oxidative stress and oxidative modifications in the bone tissue. Numerous correlations noted between the indices of oxidative/antioxidative bone status, and Cd accumulation in the bone tissue as well as indices of bone turnover and bone mineral status, recently reported by us (Toxicology 2007, 237, 89-103) in these rats, allow for the hypothesis that oxidative stress is involved in the mechanisms of damaging Cd action in the skeleton. The paper is the first report from an in vivo study indicating that Cd may affect bone tissue through disorders in its oxidative/antioxidative balance resulting in oxidative stress.
    Toxicology and Applied Pharmacology 02/2011; 250(3):327-35. · 3.98 Impact Factor
  • Toxicology Letters - TOXICOL LETT. 01/2009; 189.
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been investigated, based on a rat model of human exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced alterations in lipid metabolism. For this purpose, the concentrations of free fatty acids (FFA), phospholipids (PL), triglycerides (TG), total cholesterol (TCh), and high and low density lipoprotein cholesterol (HDL and LDL, respectively) as well as the concentrations of chosen indices of lipid peroxidation such as lipid peroxides (LPO), F2-isoprostane (F2-IsoP) and oxidized LDL (oxLDL) were estimated in the serum of male Wistar rats administered Cd (5 or 50mg/l) or/and Zn (30 or 60mg/l) in drinking water for 6 months. The exposure to 5 and 50mg Cd/l resulted in marked alterations in the lipid status reflected in increased concentrations of FFA, TCh, LDL, LPO, F2-IsoP and oxLDL, and decreased concentrations of PL and HDL in the serum. The concentrations of LDL, LPO, F2-IsoP and oxLDL were more markedly enhanced at the higher Cd dosage. The supplementation with Zn during the exposure to 5 and 50mg Cd/l entirely prevented all the Cd-induced changes in the serum concentrations of the estimated lipid compounds and indices of lipid peroxidation, except for the F2-IsoP for which Zn provided only partial protection. Based on the results it can be concluded that Zn supplementation during exposure to Cd may have a protective effect on lipid metabolism consisting in its ability to prevent hyperlipidemia, including especially hypercholesterolemia, and to protect from lipid peroxidation. The findings seem to suggest that enhanced dietary Zn intake during Cd exposure, via preventing alterations in the body status of lipids may, at least partly, protect against some effects of Cd toxicity, including oxidative damage to the cellular membranes and atherogenic action. The paper is the first report suggesting protective impact of Zn against proatherogenic Cd action on experimental model of chronic moderate and relatively high human exposure to this toxic metal.
    Chemico-biological interactions 10/2008; 177(2):142-52. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was aimed at estimate, based on the rat model of human moderate and relatively high chronic exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced weakening in the bone biomechanical properties. For this purpose, male Wistar rats were administered Cd (5 or 50 mg/l) or/and Zn (30 or 60 mg/l) in drinking water for 6 and 12 months. Bone mineral density (BMD) and biomechanical properties (yield load, ultimate load, post-yield load, displacement at yield and at ultimate, stiffness, work to fracture, yield stress, ultimate stress and Young modulus of elasticity) of the femoral distal end and femoral diaphysis were examined. Biomechanical properties of the distal femur were estimated in a compression test, whereas those of the femoral diaphysis -- in a three-point bending test. Exposure to Cd, in a dose and duration dependent manner, decreased the BMD and weakened the biomechanical properties of the femur at its distal end and diaphysis. Zn supplementation during Cd exposure partly, but importantly, prevented the weakening in the bone biomechanical properties. The favorable Zn influence seemed to result from an independent action of this bioelement and its interaction with Cd. However, Zn supply at the exposure to Cd had no statistically significant influence on the BMD at the distal end and diaphysis of the femur. The results of the present paper suggest that Zn supplementation during exposure to Cd may have a protective influence on the bone tissue biomechanical properties, and in this way it can, at least partly, decrease the risk of bone fractures. The findings seem to indicate that enhanced dietary Zn intake may be beneficial for the skeleton in subjects chronically exposed to Cd.
    Chemico-Biological Interactions 03/2008; 171(3):312-24. · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study is to investigate, based on the rat model of moderate and relatively high human exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced disorders in bone metabolism. For this purpose, male Wistar rats received Cd (5 and 50mg/l) or/and Zn (30 and 60mg/l) in drinking water for 6 and 12 months. Bone densitometry and biochemical markers of bone turnover were used to assess the effects of Cd or/and Zn. Bone mineral content (BMC) and density (BMD) were measured in the femur. Serum osteocalcin (OC) and alkaline phosphatase in trabecular (bT-ALP) and cortical (bC-ALP) bone were determined as bone formation markers, and carboxy-terminal cross-linking telopeptides of type I collagen (CTX) in serum were measured as bone resorption marker. Serum concentration of calcium (Ca) and its renal handling, as well as Zn and Cd concentrations in the serum/blood, urine and femur were evaluated as well. The exposure to 5 and 50mg Cd/l (0.340+/-0.026 and 2.498+/-0.093mg Cd/kg body wt/24h, respectively), in a dose and duration dependent manner, affected bone turnover (inhibited bone formation and stimulated its resorption) and disturbed bone mineralization (decreased BMC, BMD and Zn concentration). Zn supply at the concentration of 30 and 60mg/l (1.904+/-0.123 and 3.699+/-0.213mg/kg body wt/24h, respectively) during Cd exposure influenced the Cd-induced disorders in bone metabolism. Zn administration to the Cd-exposed rats enhanced the bone ALP activity and prevented Cd-induced bone resorption, but had no statistically significant effect on BMC and BMD; however, mean values of the densitometric parameters in the rats receiving both Cd and Zn were higher than in those treated with Cd alone. Moreover, Zn supplementation at both levels of Cd exposure was found to prevent Cd accumulation in the femur and the Cd-induced decrease in bone Zn concentration. The results of the present study allow the conclusion that Zn supplementation during Cd exposure may partly protect from disorders in bone metabolism. The influence of Zn may be accompanied by its ability to prevent Cd-induced Zn deficiency and to decrease Cd accumulation in bone tissue. The findings seem to indicate that enhanced dietary intake of Zn in subjects chronically exposed to moderate and relatively high Cd levels may have a protective influence on the skeleton.
    Toxicology 08/2007; 237(1-3):89-103. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was performed to assess the effect of simultaneous long-term exposure to cadmium (Cd) and ethanol on iron (Fe) status of male Wistar rats. The animals received drinking water containing 50 mg of Cd/l and/or 10% (w/v) ethanol for 12 weeks. Fe and Cd concentrations in serum (blood), certain tissues, urine and feces were determined by atomic absorption spectrometry. The total pool of Fe was calculated as a sum of its content in liver, spleen, kidneys, heart and brain. Fe bioavailability was evaluated based on its apparent absorption. The daily Cd intake ranged from 3.17 to 4.28 mg/kg (Cd group) and from 2.41 to 3.17 mg/kg (Cd + ethanol group); ethanol consumption ranged from 47.5 to 86.9 g/kg/24 h (ethanol group) and from 47.3 to 63.4 g/kg/24 h (Cd + ethanol group). Exposure to Cd or/and ethanol caused serious disturbances in Fe metabolism, as indicated by Fe body depletion. Both substances, applied alone and in combination, reduced the apparent Fe absorption and decreased its total pool in certain organs, and urinary excretion. However, the Cd- and ethanol-induced changes in the tissue Fe concentrations were different. Cd exposure decreased the concentration of Fe in serum, liver, spleen and femur, whereas ethanol decreased it in the spleen. In rats co-exposed to Cd and ethanol, decreased serum, spleen and brain Fe concentrations were all observed. The changes in Fe status in rats co-exposed to Cd and ethanol can be explained by the independent action of the two substances, leading to a decrease in Fe bioavailability, or by their interactions, which involves a modifying effect of ethanol on Cd turnover. The results allow the conclusion that ethanol may increase Cd accumulation, making the organism more susceptible to Fe depletion. Alcoholics thus may be at increased risk of disorders in Fe body status.
    Alcohol and Alcoholism 01/2003; 38(3):202-7. · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been determined that zinc supplementation (240 microg Zn/ml) during (for 12 weeks) or after (for 2 weeks) cadmium exposure (50 microg Cd/ml for 12 weeks) can prevent the accumulation and toxic action of Cd in the tibia of rats. The exposure to Cd led to disturbances in bone metabolism reflected by changes in the chemical composition of bone and decreased bone mineral density (osteomalacian changes). The Zn supply in conditions of Cd intoxication completely prevented the Cd-induced increase in percentage of water content and decrease in tibia ash weight, ash weight/dry weight, non-org. comp./org. comp., Zn content and concentration. Moreover, Zn partly protected from the decrease in Ca concentration and content, percentage of non-organic components content, Ca/wet weight, Ca/ash weight and Ca/dry weight. Zn administered after Cd exposure partly, but not completely, protected from Cd-induced decrease in percentage of non-organic components content, Ca/wet weight as well as Ca content and concentration. This protective effect on bone was most evident when Zn was administered during Cd exposure. But Zn, independently of the manner of its administration, did not prevent Cd accumulation in the tibia. Our results suggest that Zn supply in conditions of simultaneous exposure can prevent Cd-induced bone loss to some extent, and used after Cd treatment can give therapeutic benefits.
    Food and Chemical Toxicology 08/2001; 39(7):729-37. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was performed to assess the effect of short-term ethanol administration on cadmium retention and accumulation as well as on bioelement metabolism (zinc, copper, calcium, and magnesium) in rats exposed to an aqueous solution of cadmium chloride for 8 weeks. Intoxication with cadmium led to accumulation of this toxic metal, particularly in the liver and kidney, which was linked to metallothionein synthesis as well as to a disturbance in the metabolism of zinc, copper, and calcium. These effects were dependent on the level of exposure. The administration of ethanol in the final phase of cadmium treatment increased cadmium retention and accumulation in the body with simultaneous elevation in liver and kidney metallothionein concentration. Ethanol alone or with cadmium caused or intensified the cadmium-induced changes in metabolism of zinc and copper. Calcium metabolism disturbed by cadmium was not influenced by ethanol. Neither agents had any effect on magnesium metabolism. We conclude that even short-term ethanol consumption in conditions of exposure to cadmium can increase this heavy metal body burden and lead to more serious disturbances in metabolism of important elements such as zinc and copper. Cadmium- and ethanol-induced changes in the homeostasis of these microelements are probably connected with the ability of both xenobiotics to cause metallothionein induction.
    Alcohol and Alcoholism 01/2000; 35(5):439-45. · 1.96 Impact Factor