Howard M. Colquhoun

University of Reading, Reading, England, United Kingdom

Are you Howard M. Colquhoun?

Claim your profile

Publications (117)563.06 Total impact

  • Howard Colquhoun, Jean-Francois Lutz
    Nature Chemistry 06/2014; 6(6):455-456. · 21.76 Impact Factor
  • Howard Colquhoun, Jean-François Lutz
    Nature Chemistry 05/2014; 6(6):455-6. · 21.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.
    Polym. Chem. 05/2014; 5(11).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efforts to further extend the range of applications of polymer based materials have resulted in the recent production of healable polymers that can regain their strength after damage. Within this field of healable materials, supramolecular polymers have been subject to extensive investigation. By virtue of their reversible non-covalent interactions, cracks and fractures in such polymers can be readily and repeatably healed in order to regain key physical properties. However, many supramolecular polymers are relatively weak and elastomeric in nature, which renders them unsuitable for high strength structural applications. To overcome these deficiencies, preliminary studies have shown that it is possible to reinforce supramolecular polymers with micro- and nano-scale fillers to afford composites that are not only stronger and stiffer when compared to the polymers alone but also retain their healing abilities. This mini-review discusses the evolution of these supramolecular composites and their advantages over more conventional, covalent polymeric materials.
    Polymer International 12/2013; · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The o-palladated, chloro-bridged dimers [Pd{2-phenylpyridine(-H)}-μ-Cl]2 and [Pd{N,N-dimethylbenzylamine(-H)}-μ-Cl]2 react with cyanuric acid in the presence of base to afford closed, chiral cage-molecules in which 12 organo-Pd(II) centers, located in pairs at the vertices of an octahedron, are linked by four tetrahedrally arranged cyanurato(3-) ligands. Incomplete (Pd10) cages, having structures derived from the corresponding Pd12 cages by replacing one pair of organopalladium centers with two protons, have also been isolated. Reaction of [Pd{2-phenylpyridine(-H)}-μ-Cl]2 with trithiocyanuric acid gives an entirely different and more open type of cage-complex, comprising only nine organopalladium centers and three thiocyanurato(3-) ligands: cage-closure in this latter system appears to be inhibited by steric crowding of the thiocarbonyl groups.
    Inorganic Chemistry 09/2013; · 4.59 Impact Factor
  • Howard Colquhoun, Bert Klumperman
    Polym. Chem. 08/2013; 4(18).
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrene-functionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined π–π stacked complexes between π-electron rich pyrenyl residues and π-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6:1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2-trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.
    Polym. Chem. 03/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proton exchange membranes (PEM’s) are currently under investigation for membrane water electrolysis (PEMWE) to deliver efficient production of the high purity hydrogen needed to supply emerging clean-energy technologies such as hydrogen fuel cells. The microblock aromatic ionomer described in this work achieves high mechanical strength in an aqueous environment as a result of its designed, biphasic morphology and displays many of the qualities required in a PEM. The new ionomer membrane thus shows good proton conductivity (63 mS cm–1 at 80 °C and 100% RH), while retaining mechanical integrity under high temperature, hydrated conditions. Testing in electrolysis has shown good energy efficiency (1.67 V at 1 A cm–2 and 80 °C, corresponding to 4 kWh/Nm3 of H2), making this ionomer a potential candidate for commercial application in PEMWE.
    Macromolecules 02/2013; 46(4):1504-1511. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This mini-review details the recent development of self-healing and mendable polymeric materials which take advantage of the reversible characteristics of non-covalent interactions during their physical recovery process. Supramolecular polymer systems which undergo spontaneous (autonomous) healing, as well as those which require external stimuli to initiate the healing process (healable/mendable), are introduced and discussed. Supramolecular polymers offer key advantages over alternative approaches, as these materials can typically withstand multiple healing cycles without substantial loss of performance, as a consequence of the highly directional and fully reversible non-covalent interactions present within the polymer matrix.
    Polym. Chem. 02/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe in detail a strategy for creating foldamers in which interactions between mechanically interlocked components dictate the single-molecule assembly of a folded secondary structure. This unique folding motif is based on a flexible polyether dumbbell bearing 1,5-dioxynaphthalene (DNP) donors, which folds its way through a series of cyclobis(paraquat-p-phenylene) (CBPQT4+) acceptor rings in a serpentine fashion to enable extended donor-acceptor (D-A) stacking between DNP and the electron-poor 4,4'-bipyridinium (BIPY2+) units in CBPQT4+. These oligorotaxanes can be prepared in a wide range of sizes, with molecular weights up to >15000 Da, on account of novel one-pot reactions we developed to generate the necessary oligo-DNP precursors. The product distributions from the final kinetically-controlled stoppering reactions are highly biased towards oligorotaxanes in which approximately half of the DNP units are encircled by rings, a fact which can be rationalized if the dominant solution-state struc
    Chemical Science 02/2013; 4:1470-1483. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Self-complementary tweezer-molecules based on a naphthalenediimide core self-assemble into supramolecular dimers through mutual π-π-stacking and hydrogen bonding. The resulting motif is extremely stable in solution (K(a) = 10(5) M(-1)), and its attachment to one terminal position of a poly(ethylene glycol) chain leads to a doubling of the polymer's apparent molecular weight.
    Chemical Communications 11/2012; · 6.38 Impact Factor
  • Ioannis Manolakis, Paul Cross, Steven Ward, Howard M. Colquhoun
    [Show abstract] [Hide abstract]
    ABSTRACT: Blends of PEEK with macrocyclic thioether-ketones show initial melt-viscosities reduced by more than an order of magnitude relative to the polymer itself, enabling more facile processing and fabrication. On raising the temperature of the melt, however, the macrocycle undergoes spontaneous, entropically driven ring-opening polymerization (ED-ROP), so that the properties of the final polymer should not, in principle, be compromised by the presence of low-MW macrocyclic material.
    Journal of Materials Chemistry 09/2012; 22(38):20458-20464. · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.
    Macromolecules 07/2012; 45(13):5567-5574. · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It's just an illusion: Above a critical chain length, where oligomers contain five or more recognition units, apparently infinite donor-acceptor polypseudorotaxanes are formed in the solid state (see picture). X-ray crystallographic analyses of three different examples have shown that although the oligomeric chains are undoubtedly discrete and monodisperse, they nevertheless appear to be infinite in the crystal.
    Angewandte Chemie International Edition 06/2012; 51(29):7231-5. · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl end-capped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt %) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt %. Above 10 wt % CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be rehealed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt % CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully rehealed at 85 °C within 30 min. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing.
    Journal of the American Chemical Society 03/2012; 134(11):5362-8. · 10.68 Impact Factor
  • Howard M Colquhoun
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous approaches to the development of self-repairing polymeric materials have required either the input of external energy or the use of a healing agent. Now, a new type of elastomer, in which hard/soft phase-separation occurs at the nanoscale, displays efficient and entirely autonomic self-repair through reversible hydrogen bonding.
    Nature Chemistry 01/2012; 4(6):435-6. · 21.76 Impact Factor
  • Macromolecules 01/2012; 45:5567-5574. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The different triplet sequences in high molecular weight aromatic copolyimides comprising pyromellitimide units ("I") flanked by either ether-ketone ("K") or ether-sulfone residues ("S") show different binding strengths for pyrene-based tweezer-molecules. Such molecules bind primarily to the diimide unit through complementary π-π-stacking and hydrogen bonding. However, as shown by the magnitudes of (1)H NMR complexation shifts and tweezer-polymer binding constants, the triplet "SIS" binds tweezer-molecules more strongly than "KIS" which in turn binds such molecules more strongly than "KIK". Computational models for tweezer-polymer binding, together with single-crystal X-ray analyses of tweezer-complexes with macrocyclic ether-imides, reveal that the variations in binding strength between the different triplet sequences arise from the different conformational preferences of aromatic rings at diarylketone and diarylsulfone linkages. These preferences determine whether or not chain-folding and secondary π-π-stacking occurs between the arms of the tweezer-molecule and the 4,4'-biphenylene units which flank the central diimide residue.
    Journal of the American Chemical Society 12/2011; 133(48):19442-7. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined π-π stacked complexes. The dithiol-functionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.
    Analytical Chemistry 08/2011; 83(16):6208-14. · 5.82 Impact Factor
  • Ioannis Manolakis, Paul Cross, Howard M. Colquhoun
    Macromolecules 01/2011; · 5.93 Impact Factor

Publication Stats

411 Citations
563.06 Total Impact Points

Institutions

  • 2002–2014
    • University of Reading
      • Department of Chemistry
      Reading, England, United Kingdom
  • 2012
    • Case Western Reserve University
      Cleveland, Ohio, United States
    • Northwestern University
      • Department of Chemistry
      Evanston, IL, United States
  • 1999–2010
    • University of Salford
      Salford, England, United Kingdom
  • 1996–2009
    • The University of Manchester
      • School of Chemistry
      Manchester, ENG, United Kingdom
  • 1993–2001
    • Imperial College London
      • Department of Chemistry
      London, ENG, United Kingdom
  • 1997
    • Durham University
      • Department of Chemistry
      Durham, England, United Kingdom