M C Breschi

Università di Pisa, Pisa, Tuscany, Italy

Are you M C Breschi?

Claim your profile

Publications (133)359.58 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP) and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes). MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment. OPEN ACCESS
    PLoS ONE 12/2014; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brief periods of ischemia are known to confer to the myocardium an increased resistance to the injury due to a later and more prolonged ischemic episode. This phenomenon, known as ischemic preconditioning (IPreC), is ensured by different biological mechanisms. Although an exhaustive comprehension of them has not been reached yet, it is widely accepted that mitochondria are pivotally involved in controlling cell life and death, and thus in IPreC. Among the several signaling pathways involved, as triggers and/or end effectors, in the mitochondrial mechanisms of cardioprotection, an important role is played by the activation of potassium channels located in the mitochondrial inner membrane (mitoK) of cardiomyocytes. Presently, different types of mitoK channels have been recognized in the heart, such as ATP-sensitive (mitoKATP) and calcium-activated (mitoBKCa and mitoSKCa) potassium channels. Consistently, drugs modulating mitoK, on one hand, have been employed as useful experimental tools for early basic studies on IPreC. On the other hand, activators of mitoK are promising and innovative therapeutic agents for limiting the myocardial injury due to ischemic episodes. In this review, we report the experimental evidence supporting the role of mitoK in signaling pathways in the mechanisms of cardioprotection and an overview on the most important molecules acting as modulators of these channels, with their profiles of selectivity. Some innovative pharmaceutical strategies for mitochondriotropic drugs have been also reported. Finally, an appendix describing the main experimental approaches usually employed to study mitoK in isolated mitochondria or in intact cells has been added.
    Medicinal Research Reviews 10/2014; · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Survivin is an inhibitor of apoptosis overexpressed in chemoresistant tumors. In this study, we investigated the anticancer theranostic properties of a molecular beacon-oligodeoxynucleotide (MBODN) that targets survivin mRNA in human malignant melanoma cells. The fluorescence signal of the lipofectamine-delivered MB-ODN in A375 cells was evaluated by confocal microscopy and compared to that obtained in normal cells. Survivin mRNA and protein expression were analyzed by real-time PCR and western blot, respectively. Apoptosis was assessed by internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (􀀁􀀂m) and nuclear staining with DAPI. Transfection of MB-ODN into A375 cells generated a high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human monocytes). In A375 cells, MB-ODN treatment time dependently decreased survivin mRNA and protein expression with the maximum effect reached at 72 h (-94±1. 6 and -90. 1±1. 8%, respectively), compared to control. Treatment with MB-ODN for 48 h induced a significant (P<0. 001) variation in 􀀁􀀂m, accumulation of histone-complexed DNA fragments in the cytoplasmic fraction and nuclear condensation. MB-ODN also enhanced the proapoptotic effect induced by docetaxel and cisplatin. In conclusion, our findings provide evidence of a novel potential anticancer strategy for simultaneous imaging and targeted therapy. Keywords: Survivin, molecular beacon, melanoma, cancer detection, drug resistance, targeted therapy.
    Global Biotechnology Congress 2014, Boston, MA, USA; 06/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulfide is an endogenous pleiotropic gasotransmitter, which mediates important physiological effects in the human body. Accordingly, an impaired production of endogenous hydrogen sulfide contributes to the pathogenesis of important disorders. To date, exogenous compounds, acting as hydrogen sulfide-releasing agents, are viewed as promising pharmacotherapeutic agents. In a recent report, the hydrogen sulfide-releasing properties of some synthetic aryl isothiocyanate derivatives have been reported, indicating that the isothiocyanate function can be viewed as a suitable slow hydrogen sulfide-releasing moiety, endowed with the pharmacological potential typical of this gasotransmitter. Many isothiocyanate derivatives (deriving from a myrosinase-mediated transformation of glucosinolates) are well-known secondary metabolites of plants belonging to the family Brassicaceae, a large botanical family comprising many edible species. The phytotherapeutic and nutraceutic usefulness of Brassicaceae in the prevention of important human diseases, such as cancer, neurodegenerative processes and cardiovascular diseases has been widely discussed in the scientific literature. Although these effects have been largely attributed to isothiocyanates, the exact mechanism of action is still unknown. In this experimental work, we aimed to investigate the possible hydrogen sulfide-releasing capacity of some important natural isothiocyanates, studying it in vitro by amperometric detection. Some of the tested natural isothiocyanates exhibited significant hydrogen sulfide release, leading us to hypothesize that hydrogen sulfide may be, at least in part, a relevant player accounting for several biological effects of Brassicaceae.
    Planta Medica 06/2014; 80(8/09):610-613. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulfide (H2S) is an endogenous gasotransmitter, which mediates important physiological effects in the cardiovascular system. Accordingly, an impaired production of endogenous H2S contributes to the pathogenesis of important cardiovascular disorders, such as hypertension. Therefore, exogenous compounds, acting as H2S-releasing agents, are viewed as promising pharmacotherapeutic agents for cardiovascular diseases. Thus, this paper aimed at evaluating the H2S-releasing properties of some aryl isothiocyanate derivatives and their vascular effects. The release of H2S was determined by amperometry, spectrophotometry and gas/mass chromatography. Moreover, the vascular activity of selected isothiocyanates were tested in rat conductance (aorta) and coronary arteries. Since H2S has been recently reported to act as an activator of vascular Kv7 potassium channels, the possible membrane hyperpolarizing effects of isothiocyanates were tested on human vascular smooth muscle (VSM) cells by spectrofluorescent dyes. Among the tested compounds, phenyl isothiocyanate (PhNCS) and 4-carboxyphenyl isothiocyanate (PhNCS-COOH) exhibited slow-H2S-release, triggered by organic thiols such as L-Cysteine. These compounds were endowed of vasorelaxing effects on conductance and coronary arteries. Moreover, these two isothiocyanates caused membrane hyperpolarization of VSM cells. The vascular effects of isothiocyanates were strongly abolished by the selective Kv7-blocker XE991. In conclusion, the isothiocyanate function can be viewed as a suitable slow H2S-releasing moiety, endowed with vasorelaxing and hypotensive effects, typical of this gasotransmitter. Thus, such a chemical moiety can be employed for the development of novel chemical tools for basic studies and promising cardiovascular drugs.
    Vascular Pharmacology 11/2013; · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was aimed at investigating the antitumor activity of novel 2-oxindole derivatives against a well-characterized human nonsmall cell lung cancer (NSCLC) cell line. Test compounds produced an antiproliferative activity in the low micromolar/submicromolar range of concentrations and significantly induced typical apoptotic morphology with cell shrinkage, nuclear condensation and fragmentation, and rupture of cells into debris in a relatively low percentage of A549 cells. Cell cycle arrest occurred at the G1/S phase (1a and 2), and Akt phosphorylation was significantly inhibited at Thr308 and Ser473. The most active compound (1a) has an IC50 6-fold lower than the Akt inhibitor, perifosine. These data suggest that the new compounds may be cytostatic and may have maximum clinical effects in NSCLC patients who do not respond to EGFR inhibitors. These findings prompt us to further explore the oxindole structure as leading scaffold to design new molecules with potent antitumor activity against NSCLC.
    ACS Medicinal Chemistry Letters 10/2013; 4(12):1137–1141. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A small library of arylthioamides 1-12 was easily synthesized, and their H2S-releasing properties were evaluated both in the absence or in the presence of an organic thiol such as l-cysteine. A number of arylthioamides (1-3 and 7) showed a slow and l-cysteine-dependent H2S-releasing mechanism, similar to that exhibited by the reference slow H2S-releasing agents, such as diallyl disulfide (DADS) and the phosphinodithioate derivative GYY 4137. Compound 1 strongly abolished the noradrenaline-induced vasoconstriction in isolated rat aortic rings and hyperpolarized the membranes of human vascular smooth muscle cells in a concentration-dependent fashion. Finally, a significant reduction of the systolic blood pressure of anesthetized normotensive rats was observed after its oral administration. Altogether these results highlighted the potential of arylthioamides 1-3 and 7 as H2S-donors for basic studies, and for the rational design/development of promising pharmacotherapeutic agents to treat cardiovascular diseases.
    ACS Medicinal Chemistry Letters 10/2013; 4(10):904-8. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective cyclooxygenase 2 (COX2) inhibitors (COXIBs) are effective anti-inflammatory and analgesic drugs with improved gastrointestinal (GI) safety compared to nonselective nonsteroidal anti-inflammatory drugs (known as traditional (tNSAIDs). However, their use is associated with a cardiovascular (CV) hazard (i.e. increased incidence of thrombotic events and hypertension) due to the inhibition of COX2-dependent vascular prostacyclin. Aiming to design COX2-selective inhibitors with improved CV safety, new NO-releasing COXIBs (NO-COXIBs) have been developed. In these hybrid drugs, the NO-mediated CV effects are expected to compensate for the COXIB-mediated inhibition of prostacyclin. This study evaluates the potential CV beneficial effects of VA694, a promising NO-COXIB, the anti-inflammatory effects of which have been previously characterized in several in vitro and in vivo experimental models. When incubated in hepatic homogenate, VA694 acted as a slow NO-donor. Moreover, it caused NO-mediated relaxant effects in the vascular smooth muscle. The chronic oral administration of VA694 to young spontaneously hypertensive rats (SHRs) significantly slowed down the age-related development of hypertension and was associated with increased plasma levels of nitrates, stable end-metabolites of NO. Furthermore, a significant improvement of coronary flow and a significant reduction of endothelial dysfunction were observed in SHRs submitted to chronic administration of VA694. In conclusion, VA694 is a promising COX2-inhibiting hybrid drug, showing NO releasing properties which may mitigate the CV deleterious effects associated with the COX2-inhibition.
    Pharmacological Research 09/2013; · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microparticles (MPs) are membrane fragments that may play a role in the pathogenesis of chronic respiratory diseases. We aimed to investigate whether human monocytes/macrophage-derived MPs could induce a pro-inflammatory phenotype in human bronchial smooth muscle cells (BSMC) and the effect of montelukast in this setting. Experimental methods included isolation of human monocytes/macrophages and generation of monocyte-derived MPs, RT-PCR analysis of gene expression, immunoenzymatic determination of pro-inflammatory factor release, bioluminescent assay of intracellular cAMP levels and electromobility shift assay analysis of NF-κB nuclear translocation. Stimulation of human BSMC with monocyte-derived MPs induced a pro-inflammatory switch in human BSMC by inducing gene expression (COX-2 and IL-8), protein release in the supernatant (PGE2 and IL-8), and heterologous β2-adrenoceptor desensitisation. The latter effect was most likely related to autocrine PGE2 since pre-treatment with COX inhibitors restored the ability of salbutamol to induce cAMP synthesis in desensitised cells. Challenge with MPs induced nuclear translocation of NF-κB and selective NF-κB inhibition decreased MP-induced cytokine release in the supernatant. Montelukast treatment prevented IL-8 release and heterologous β2-adrenoceptor desensitisation in human BSMC exposed to monocyte-derived MPs by blocking NF-κB nuclear translocation. These findings provide evidence on the role of human monocyte-derived MPs in the airway smooth muscle phenotype switch as a novel potential mechanism in the progression of chronic respiratory diseases and on the protective effects by montelukast in this setting.
    Pharmacological Research 08/2013; · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Naringenin (NAR), flavonoid abundant in the genus Citrus, has been reported to interact with the large-conductance calcium-activated potassium channels (BK). Since activators of BK channels expressed in cardiac mitochondria trigger protective effects in several models of myocardial ischemia/reperfusion (I/R), this work aimed to evaluate the potential cardioprotective effects of NAR and the involvement of mitochondrial BK channels.In an in vivo model of acute infarct in rats, NAR (100 mg/kg i.p.) significantly reduced the heart injury induced by I/R. This effect was antagonized by the selective BK-blocker paxilline (PAX). The cardioprotective dose of NAR did not cause significant effects on the blood pressure. In Largendorff-perfused rat hearts submitted to ischemia/reperfusion, NAR improved the post-ischemic functional parameters (left ventricle developed pressure and dP/dt) with lower extension of myocardial injury. On isolated rat cardiac mitochondria, NAR caused a concentration-dependent depolarization of mitochondrial membrane and caused a trans-membrane flow of thallium (potassium-mimetic cation). Both these effects were antagonized by selective blockers of BK channels. Furthermore, NAR half-reduced the calcium accumulation into the matrix of cardiac mitochondria exposed to high calcium concentrations. In conclusion, NAR exerts anti-ischemic effects through a “pharmacological preconditioning” that it is likely to be mediated, at least in part, by the activation of mitochondrial BK channels.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Montelukast (MK) is a potent cysteinyl-leukotriene receptor antagonist that causes dose-related improvements in chronic asthma. We sought to determine whether MK was able to prevent salbutamol-induced tolerance in airway smooth muscle. Homologous β2-adrenoceptor desensitisation models were established in guinea-pigs and in human bronchial smooth muscle cells by chronic salbutamol administration. Characterisation tools included measurement of the response of tracheal smooth muscle tissues to salbutamol, analysis of gene expression and receptor trafficking, evaluation of intracellular cAMP levels and phosphodiesterase (PDE) activity in human bronchial smooth muscle cells. Salbutamol-induced β2-adrenoceptor desensitisation was characterised by β2-agonist hyporesponsiveness (-30%, p<0.001) in desensitised tracheal smooth muscle, as compared to controls. MK, given intraperitoneally at 5 mg/kg(/)day for 6 consecutive days, completely restored tissue responsiveness to salbutamol. Prolonged salbutamol treatment significantly decreased cAMP synthesis, induced a complete removal of the β2-adrenoceptor from plasma membrane with a parallel increase in the cytosol and increased PDE4D5 gene transcription and PDE activity in human bronchial smooth muscle cells. In homologously desensitised BSMC, MK 30 μM for 24 h was able to prevent salbutamol subsensitivity and such an effect was associated with inhibition of salbutamol-induced PDE4 activity and restoration of membrane β2-adrenoceptor expression and function. These findings suggest the presence of a favourable interaction between MK and β2-adrenoceptor agonists that might improve the therapeutic index of bronchodilators in patients with chronic respiratory diseases.
    Pulmonary Pharmacology &amp Therapeutics 06/2013; · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavonoids are important components of 'functional foods', with beneficial effects on the cardiovascular function, mainly due to their antioxidant activity. Many flavonoids exert antihypertensive, anti-atherosclerotic and antiplatelet activity and positive effects against endothelial dysfunction. Recent evidence indicates that they exert cardioprotective effects against myocardial ischaemia/reperfusion (I/R) injury. The aim of this work was to investigate these properties for flavonoids with different structural characteristics. In this work, the cardioprotective effects of eight flavonoids endowed with different structural characteristics were tested on Langendorff-perfused rat hearts submitted to 30 min of global ischaemia followed by 120 min of reperfusion (I/R). Only the 5-hydroxy-substituted derivatives, such as 5-hydroxy flavone, apigenin, chrysin and naringenin, conferred on the hearts an improved post-ischaemic functional recovery associated with lower extension of tissue injury. A similar pharmacological profile was exhibited by 5-methoxy flavone. In contrast, 6-hydroxy flavone, 7-hydroxy flavone and 4'-hydroxy flavanone did not confer significant protection against the injury induced by I/R. Some flavonoids exhibit direct cardioprotective effects against the injury induced by drastic I/R and this pharmacological property seems to be related to their structural characteristics. Such an influence of structural requirements seems to indicate that the cardioprotective effects may be due to the interaction with specific pharmacological targets.
    The Journal of pharmacy and pharmacology. 05/2013; 65(5):750-6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Naringenin (NAR), flavonoid abundant in the genus Citrus, has been reported to interact with the large-conductance calcium-activated potassium channels (BK). Since activators of BK channels expressed in cardiac mitochondria trigger protective effects in several models of myocardial ischemia/reperfusion (I/R), this work aimed to evaluate the potential cardioprotective effects of NAR and the involvement of mitochondrial BK channels. In an in vivo model of acute infarct in rats, NAR (100mg/Kg i.p.) significantly reduced the heart injury induced by I/R. This effect was antagonized by the selective BK-blocker paxilline (PAX). The cardioprotective dose of NAR did not cause significant effects on the blood pressure. In Largendorff-perfused rat hearts submitted to ischemia/reperfusion, NAR improved the post-ischemic functional parameters (left ventricle developed pressure and dP/dt) with lower extension of myocardial injury. On isolated rat cardiac mitochondria, NAR caused a concentration-dependent depolarization of mitochondrial membrane and caused a trans-membrane flow of thallium (potassium-mimetic cation). Both these effects were antagonized by selective blockers of BK channels. Furthermore, NAR half-reduced the calcium accumulation into the matrix of cardiac mitochondria exposed to high calcium concentrations. In conclusion, NAR exerts anti-ischemic effects through a "pharmacological preconditioning" that it is likely to be mediated, at least in part, by the activation of mitochondrial BK channels.
    Biochemical pharmacology 04/2013; · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulphide (H(2)S) has been recently hypothesized to be an endogenous adipocyte-derived relaxing factor, evoking vasorelaxation of conductance and resistance vessels. Although the activation of ATP-sensitive potassium channels is known to play a central role in H2S-induced vasorelaxation, activation of vascular K(v)7 voltage-gated potassium channels has also been suggested. To investigate this possibility, the ability of selective activators and blockers of distinct classes of potassium channels to affect vasodilation induced by the the H(2)S-donor NaHS, as well as NaHS-induced Rb(+) efflux in endothelium-denuded rat aortic rings, was investigated. NaHS-induced changes of membrane potential were fluorimetrically assessed on human vascular smooth muscle (VSM) cells. Modulation of K(v)7.4 channels by NaHS was assessed by electrophysiological studies, upon their heterologous expression in CHO cells. In isolated aortic rings, NaHS evoked vasorelaxing responses associated with an increase of Rb(+)-efflux. NaHS promoted membrane hyperpolarization of human VSM cells. These effects were antagonized by selective blockers of K(v)7 channels. The H(2)S-donor caused a left-shift of current activation threshold of K(v)7.4 channels expressed in CHO cells. Altogether, these results suggest that the activation of K(v)7.4 channels is a key mechanism in the vascular effects of H(2)S. Given the relevant roles played by K(v)7.4 channels in VSM contractility and by H(2)S in circulatory homeostasis regulation, these findings provide interesting insights to improve our understanding of H(2)S pathophysiology and to focus on K(v)7.4 channels as novel targets for therapeutic approaches via the "H(2)S-system".
    Pharmacological Research 12/2012; · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulphide (H(2) S) is emerging as an important endogenous modulator, which exhibits the beneficial effects of nitric oxide (NO) on the cardiovascular (CV) system, without producing toxic metabolites. H(2) S is biosynthesized in mammalian tissues by cystathionine-β-synthase and cystathionine-γ-lyase. H(2) S exhibits the antioxidant properties of inorganic and organic sulphites, behaving as a scavenger of reactive oxygen species. There is also clear evidence that H(2) S triggers other important effects, mainly mediated by the activation of ATP-sensitive potassium channels (K(ATP) ). This mechanism accounts for the vasorelaxing and cardioprotective effects of H(2) S. Furthermore, H(2) S inhibits smooth muscle proliferation and platelet aggregation. In non-CV systems, H(2) S regulates the functions of the central nervous system, as well as respiratory, gastroenteric, and endocrine systems. Conversely, H(2) S deficiency contributes to the pathogenesis of hypertension. Likewise, impairment of H(2) S biosynthesis is involved in CV complications associated with diabetes mellitus. There is also evidence of a cross-talk between the H(2) S and the endothelial NO pathways. In particular, recent observations indicate a possible pathogenic link between deficiencies of H(2) S activity and the progress of endothelial dysfunction. These biological aspects of endogenous H(2) S have led several authors to look at this mediator as "the new NO" that has given attractive opportunities to develop innovative classes of drugs. In this review, the main biological actions of H(2) S are discussed. Moreover, some examples of H(2) S-donors are shown, as well as some hybrids, in which H(2) S-releasing moieties are added to well-known drugs, for improving their pharmacodynamic profile or reducing the potential for adverse effects, are reported.
    Medicinal Research Reviews 11/2012; 32(6):1093-130. · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AND PURPOSE: An important objective in asthma therapy is to prevent the accelerated growth of airway smooth muscle cells which leads to hyperplasia and bronchial hyperreactivity. We investigated the effect of combination of salbutamol and peroxisome proliferator-activated receptor (PPAR)γ agonists on growth factor-stimulated human bronchial smooth muscle cell (BSMC) proliferation. EXPERIMENTAL APPROACH: Synergism was quantified by the combination index-isobologram method. Characterization tools included analyses of growth inhibition, cell viability, DNA fragmentation, gene transcription, cell cycle, and protein expression. KEY RESULTS: The PPARγ gene was highly expressed in BSMC and the protein was identified in cell nuclei. Single-agent salbutamol or PPARγ agonists prevented growth factor-induced human BSMC proliferation within a micromolar range of concentrations through their specific receptor subtypes. Sub-micromolar levels of combined salbutamol-PPARγ agonist inhibited growth by 50% at concentrations from ∼2 to 12-fold lower than those required for each drug alone, without induction of apoptosis or necrosis. Combination treatments also promote cell cycle arrest at the G1/S transition phase and inhibition of ERK phosphorylation. CONCLUSIONS AND IMPLICATIONS: The synergistic interaction between PPARγ agonists and β(2) -adrenoceptor agonists on airway smooth muscle cell proliferation highlights the antiremodeling potential of this combination in chronic lung diseases.
    British Journal of Pharmacology 08/2012; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulphide (H(2)S) is now viewed as an important endogenous gasotransmitter, which exhibits many beneficial effects on the cardiovascular system. H(2)S is biosynthesized in mammalian tissues by both non-enzymatic processes and several enzymatic pathways ensured by cystathionine-β-synthase and cystathionine-γ-lyase. H(2)S is endowed with the antioxidant properties of inorganic and organic sulphites, being a scavenger of reactive oxygen species. Furthermore, H(2)S triggers other important effects and the activation of ATP-sensitive potassium channels (KATP) accounts for its vasorelaxing and cardioprotective effects. H(2)S also inhibits smooth muscle proliferation and platelet aggregation. Conversely, the impairment of H(2)S contributes to the pathogenesis of hypertension and is involved in cardiovascular complications associated with diabetes mellitus. There is also evidence of a link between H(2)S and endothelial nitric oxide (NO). Recent observations indicate a possible pathogenic link between deficiencies of H(2)S activity and the progress of endothelial dysfunction. These biological aspects of endogenous H(2)S led to consider this mediator as "the new NO" and to evaluate new attractive opportunities to develop innovative classes of drugs. In this review, the main roles played by H(2)S in the cardiovascular system and the first examples of H(2)S-donor drugs are discussed. Some hybrid drugs are also addressed in this review. In such compounds opportune H(2)S-releasing moieties are conjugated to well-known drugs to improve their pharmacodynamic profile or to reduce the potential for adverse effects.
    Current Medicinal Chemistry 06/2012; 19(20):3325-36. · 3.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microparticles are membrane vesicles shed by cells upon activation and/or apoptosis. Microparticles are involved in several processes, including blood coagulation and thrombosis. In addition to their role in the regulation of lipid metabolism, peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists exert other effects, both dependent on and independent of PPAR-γ activation. Some PPAR-γ agonists have been linked to an increased risk of thrombotic diseases. We aimed to investigate the potential role of PPAR-γ agonists on the generation of procoagulant microparticles by human monocytes/macrophages. Monocytes/macrophages were isolated from the buffy coats of normal donors. Cells were incubated with three structurally unrelated PPAR-γ agonists, namely, rosiglitazone, pioglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). Microparticle generation was assessed as phosphatidylserine concentration by a prothrombinase assay, after capturing the microparticles onto annexin V-coated wells. Intracellular calcium concentration was assessed by a fluorescent probe. Extracellular signal-regulated kinase (ERK) phosphorylation was assessed by western blot. Tissue factor expression on microparticles was measured with a one-stage clotting assay. Rosiglitazone and 15-deoxy-Δ(12,14)-prostaglandin J(2), but not pioglitazone, caused a dose-dependent, significant increase in intracellular calcium mobilization and tissue factor-bearing microparticle generation. EGTA inhibited microparticle generation. The specific PPAR-γ inhibitor, GW9662, also inhibited microparticle generation. Finally, rosiglitazone and 15-deoxy-Δ(12,14)-prostaglandin J(2) caused phosphorylation of ERK; inhibition of ERK by PD98059 inhibited microparticle generation. The PPAR-γ agonists rosiglitazone and 15-deoxy-Δ(12,14)-prostaglandin J(2), but not pioglitazone, caused an increase in procoagulant, tissue factor-bearing microparticle generation by human monocytes/macrophages. The effect was dependent on ERK phosphorylation and partly mediated through intracellular calcium mobilization; however, direct activation of the PPAR-γ ligand was also involved.
    Cardiovascular Research 03/2012; 94(3):537-44. · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nowadays, many people still fall victim to tuberculosis, the disease that has a worldwide spreading. Moreover, the problem of resistance to isoniazid and rifampin, the two most effective antitubercular drugs, is assuming an ever-growing importance. The need for new drugs active against Mycobacterium tuberculosis represents nowadays a quite relevant problem in medicinal chemistry. Several purine and 2,3-dihydropurine derivatives have recently emerged, showing considerable antitubercular properties. In this work, a quantitative structure-activity relationship (QSAR) model was developed, which is able to predict whether new purine and 2,3-dihydropurine derivatives belong to an 'Active' or 'Inactive' class against the above micro-organism. The obtained prediction model is based on a classification tree; it was built with a small number of descriptors, which allowed us to outline structural features important to predict antitubercular activity of such classes of compounds.
    Chemical Biology &amp Drug Design 07/2011; 78(4):718-24. · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of ATP-sensitive potassium channels (K(ATP)), play a key role in an endogenous "self-defence" mechanism, known as ischemic preconditioning (IPC), which is fundamentally involved in the protection of the heart against the ischemia/reperfusion injury. Presently, it is widely accepted that IPC is mainly (albeit not exclusively) mediated by the activation of K(ATP) channels expressed in the mitochondrial inner membrane (mito-K(ATP)) rather than the sarcoplasmatic ones (sarc-K(ATP)). Consistently, exogenous activation of K(ATP) channels by pharmacological tools can be viewed as one of the most promising strategies for the therapy of myocardial ischemia. As part of our research program devoted to the synthesis and the evaluation of new cardioprotective agents, we extensively studied several six-membered spiro-heterocycle-benzopyran compounds endowed of a significant anti-ischemic activity. The positive results obtained, prompted us to further explore the influence on the biopharmacological effects, of the spiro-substitution at C4 benzopyran nucleus by replacing the six-membered spirocycle of the most active compounds with 5-membered-one. The preliminary evaluation of the new compounds on cultured H9c2 cardiomyoblasts exposed to anoxia/reperfusion and on Langendorff-perfused rat hearts submitted to ischemia/reperfusion cycles, showed that some of them can exert a cardioprotective effect. This anti-ischemic activity was antagonized by 5-hydroxydecanoic acid, a selective blocker of mito-K(ATP) channels, confirming the involvement of this channel in the cardioprotective activity.
    European Journal of Medicinal Chemistry 03/2011; 46(3):966-73. · 3.43 Impact Factor

Publication Stats

711 Citations
359.58 Total Impact Points

Institutions

  • 1972–2014
    • Università di Pisa
      • • Department of Pharmacy
      • • Department of Chemistry and Industrial Chemistry
      • • Department of Clinical and Experimental Medicine
      Pisa, Tuscany, Italy
  • 1990–1997
    • Università degli studi di Parma
      Parma, Emilia-Romagna, Italy
  • 1990–1993
    • Università Politecnica delle Marche
      • • Department of Life and Environmental Sciences - DiSVA
      • • Faculty of Medicine and Surgery
      Ancona, The Marches, Italy
  • 1982
    • Università degli Studi di Siena
      Siena, Tuscany, Italy