Bin He

University of Minnesota Duluth, Duluth, Minnesota, United States

Are you Bin He?

Claim your profile

Publications (370)612.29 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetoacoustic tomography with magnetic induction (MAT-MI) was recently introduced as a noninvasive electrical conductivity imaging approach with high spatial resolution close to ultrasound imaging. In this study, we test the feasibility of the MAT-MI method for breast tumor imaging using numerical modeling and computer simulation. Using the finite element method, we have built three-dimensional numerical breast models with varieties of embedded tumors for this simulation study. In order to obtain an accurate and stable forward solution that does not have numerical errors caused by singular MAT-MI acoustic sources at conductivity boundaries, we first derive an integral forward method for calculating MAT-MI acoustic sources over the entire imaging volume. An inverse algorithm for reconstructing the MAT-MI acoustic source is also derived with spherical measurement aperture, which simulates a practical setup for breast imaging. With the numerical breast models, we have conducted computer simulations under different imaging parameter setups and all the results suggest that breast tumors that have large conductivity in contrast to the surrounding tissue as reported in the literature may be readily detected in the reconstructed MAT-MI images. In addition, our simulations also suggest that the sensitivity of imaging breast tumors using the presented MAT-MI setup depends more on the tumor location and the conductivity contrast between the tumor and its surrounding tissue than on the tumor size.
    Physics in Medicine and Biology 03/2011; 56(7):1967-83. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scalp electroencephalography (EEG) has been established as a major component of the pre-surgical evaluation for epilepsy surgery. However, its ability to localize seizure onset zones (SOZ) has been significantly restricted by its low spatial resolution and indirect correlation with underlying brain activities. Here we report a novel non-invasive dynamic seizure imaging (DSI) approach based upon high-density EEG recordings. This novel approach was particularly designed to image the dynamic changes of ictal rhythmic discharges that evolve through time, space and frequency. This method was evaluated in a group of 8 epilepsy patients and results were rigorously validated using intracranial EEG (iEEG) (n=3) and surgical outcome (n=7). The DSI localized the ictal activity in concordance with surgically resected zones and ictal iEEG recordings in the cohort of patients. The present promising results support the ability to precisely and accurately image dynamic seizure activity from non-invasive measurements. The successful establishment of such a non-invasive seizure imaging modality for surgical evaluation will have a significant impact in the management of medically intractable epilepsy.
    NeuroImage 03/2011; 56(4):1908-17. · 6.25 Impact Factor
  • Source
    Chenguang Liu, Bin He
    [Show abstract] [Hide abstract]
    ABSTRACT: A new algorithm for 3-D imaging of the activation sequence from noninvasive body surface potentials is proposed. After formulating the nonlinear relationship between the 3-D activation sequence and the body surface recordings during activation, the extended Kalman filter (EKF) is utilized to estimate the activation sequence in a recursive way. The state vector containing the activation sequence is optimized during iteration by updating the error variance/covariance matrix. A new regularization scheme is incorporated into the "predict" procedure of EKF to tackle the ill-posedness of the inverse problem. The EKF-based algorithm shows good performance in simulation under single-site pacing. Between the estimated activation sequences and true values, the average correlation coefficient (CC) is 0.95, and the relative error (RE) is 0.13. The average localization error (LE) when localizing the pacing site is 3.0 mm. Good results are also obtained under dual-site pacing (CC = 0.93, RE = 0.16, and LE = 4.3 mm). Furthermore, the algorithm shows robustness to noise. The present promising results demonstrate that the proposed EKF-based inverse approach can noninvasively estimate the 3-D activation sequence with good accuracy and the new algorithm shows good features due to the application of EKF.
    IEEE transactions on bio-medical engineering 03/2011; 58(3):541-9. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a MATLAB-based toolbox, eConnectome (electrophysiological connectome), for mapping and imaging functional connectivity at both the scalp and cortical levels from the electroencephalogram (EEG), as well as from the electrocorticogram (ECoG). Graphical user interfaces were designed for interactive and intuitive use of the toolbox. Major functions of eConnectome include EEG/ECoG preprocessing, scalp spatial mapping, cortical source estimation, connectivity analysis, and visualization. Granger causality measures such as directed transfer function and adaptive directed transfer function were implemented to estimate the directional interactions of brain functional networks, over the scalp and cortical sensor spaces. Cortical current density inverse imaging was implemented using a generic realistic geometry brain-head model from scalp EEGs. Granger causality could be further estimated over the cortical source domain from the inversely reconstructed cortical source signals as derived from the scalp EEG. Users may implement other connectivity estimators in the framework of eConnectome for various applications. The toolbox package is open-source and freely available at http://econnectome.umn.edu under the GNU general public license for noncommercial and academic uses.
    Journal of neuroscience methods 02/2011; 195(2):261-9. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to assess the feasibility of identifying the primary hand sensory area and central sulcus in pediatric patients using the cortical potential imaging (CPI) method from the scalp recorded somatosensory evoked potentials (SEPs). The CPI method was used to reconstruct the cortical potential distribution from the scalp potentials with the boundary element (3-layer: scalp, skull and brain) head model based on MR images of individual subjects. The cortical potentials estimated from the pre-operative scalp SEPs of four pediatric patients, were compared with the post-op subdural SEP recordings made in the same subjects. Estimated and directly recorded cortical SEP maps showed comparable spatial patterns on the cortical surface in four patients (spatial correlation coefficient >0.7 in the SEP spikes). For two of four patients, the estimated waveforms correlated significantly to the waveforms obtained by direct cortical recordings. The present results demonstrated the feasibility of the cortical potential imaging approach in noninvasive imaging spatial distribution and temporal waveforms of cortical potentials for pediatric patients. These also suggest that the CPI method may provide a promising means of estimating the cortical potential and noninvasive localizing the central sulcus to aid surgical planning for pediatric patients.
    Brain Topography 01/2011; 23(4):333-43. · 3.67 Impact Factor
  • Clinical Neurophysiology - CLIN NEUROPHYSIOL. 01/2011; 122.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Improved non-invasive localization of the epileptogenic foci prior to epilepsy surgery would improve surgical outcome in patients with partial seizure disorders. A critical component for the identification of the epileptogenic brain is the analysis of electrophysiological data obtained during ictal activity from prolonged intracranial recordings. The development of a noninvasive means to identify the seizure onset zone (SOZ) would thus play an important role in treating patients with intractable epilepsy. In the present study, we have investigated non-invasive imaging of epileptiform activity in patients with medically intractable epilepsy by means of a cortical potential imaging (CPI) technique. Eight pediatric patients (1M/7F, ages 4-14 years) with intractable partial epilepsy were studied. Each patient had multiple (6 to 14) interictal spikes (IIS) subjected to the CPI analysis. Realistic geometry boundary element head models were built using each individual's MRI in order to maximize the imaging precision. CPI analysis was performed on the IISs, and extrema in the estimated CPI images were compared with SOZs as determined from the ictal electrocorticogram (ECoG) recordings, as well as the resected areas in the patients and surgical outcomes. The distances between the maximum cortical activities of the IISs reflected by the estimated cortical potential distributions and the SOZs were determined to quantitatively evaluate the performance of the CPI in localizing the epileptogenic zone. Ictal ECoG recordings revealed that six patients exhibited a single epileptogenic focus while two patients had multiple foci. In each patient, the CPI results revealed an area of activity overlapping with the SOZs as identified by ictal ECoG. The distance from the extreme of the CPI images at the peak of IIS to the nearest intracranial electrode associated with the onset of the ictal activity was evaluated for each patient and the averaged distance was 4.6mm. In the group of patients studied, the CPI imaged epileptogenic foci were within the resected areas. According to the follow-up of the eight patients included, two were seizure free and six had substantial reduction in seizure frequency. These promising results demonstrate the potential for noninvasive localization of the epileptogenic focus from interictal scalp EEG recordings. Confirmation of our results may have a significant impact on the process of presurgical planning in pediatric patients with intractable epilepsy by dramatically reducing or potentially eliminating the use of intracranial recording.
    NeuroImage 01/2011; 54(1):244-52. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.
    Applied Physics Letters 01/2011; 98(2):23703. · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the neural mechanisms responsible for human social interactions is difficult, since the brain activities of two or more individuals have to be examined simultaneously and correlated with the observed social patterns. We introduce the concept of hyper-brain network, a connectivity pattern representing at once the information flow among the cortical regions of a single brain as well as the relations among the areas of two distinct brains. Graph analysis of hyper-brain networks constructed from the EEG scanning of 26 couples of individuals playing the Iterated Prisoner's Dilemma reveals the possibility to predict non-cooperative interactions during the decision-making phase. The hyper-brain networks of two-defector couples have significantly less inter-brain links and overall higher modularity - i.e. the tendency to form two separate subgraphs - than couples playing cooperative or tit-for-tat strategies. The decision to defect can be "read" in advance by evaluating the changes of connectivity pattern in the hyper-brain network.
    PLoS ONE 01/2011; 5:0014187. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current gold standard for the localization of the cortical regions responsible for the initiation and propagation of the ictal activity is through the use of invasive electrocorticography (ECoG). This method is utilized to guide surgical intervention in cases of medically intractable epilepsy by identifying the location and extent of the epileptogenic focus. Recent studies have proposed mechanisms in which the activity of epileptogenic cortical networks, rather than discrete focal sources, contributes to the generation of the ictal state. If true, selective modulation of key network components could be employed for the prevention and termination of the ictal state. Here, we have applied graph theory methods as a means to identify critical network nodes in cortical networks during both ictal and interictal states. ECoG recordings were obtained from a cohort of 25 patients undergoing presurgical monitoring for the treatment of intractable epilepsy at the Mayo Clinic (Rochester, MN, U.S.A.). One graph measure, the betweenness centrality, was found to correlate with the location of the resected cortical regions in patients who were seizure-free following surgical intervention. Furthermore, these network interactions were also observed during random nonictal periods as well as during interictal spike activity. These network characteristics were found to be frequency dependent, with high frequency gamma band activity most closely correlated with improved postsurgical outcome as has been reported in previous literature. These findings could lead to improved understanding of epileptogenesis. In addition, this theoretically allows for more targeted therapeutic interventions through the selected modulation or disruption of these epileptogenic networks.
    Epilepsia 01/2011; 52(1):84-93. · 3.96 Impact Factor
  • Source
    Gang Hu, Bin He
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In the present study, we first estimated the imaging spatial resolution by calculating the full width at half maximum (FWHM) of the system point spread function (PSF). The actual spatial resolution of our MAT-MI system was experimentally determined to be 1.51 mm by a parallel-line-source phantom with Rayleigh criterion. Reconstructed images made from tissue-mimicking gel phantoms, as well as animal tissue samples, were consistent with the morphological structures of the samples. The electrical conductivity value of the samples was determined directly by a calibrated four-electrode system. It has been demonstrated that MAT-MI is able to image the electrical impedance properties of biological tissues with better than 2 mm spatial resolution. These results suggest the potential of MAT-MI for application to early detection of small-size diseased tissues (e.g. small breast cancer).
    PLoS ONE 01/2011; 6(8):e23421. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inattention to current activity is ubiquitous in everyday situations. Mind wandering is an example of such a state, and its related brain areas have been examined in the literature. However, there is no clear evidence regarding neural rhythmic activities linked to mind wandering. Using a vigilance task with thought sampling and electroencephalography recording, the current study simultaneously examined neural oscillatory activities related to subjectively reported and behaviorally indexed mind wandering. By implementing time-frequency analysis, we found that subjectively reported mind wandering, relative to behaviorally indexed, showed increased gamma band activity at bilateral frontal-central areas. By means of beamformer source imaging, we found subjectively reported mind wandering within the gamma band to be characterized by increased activation in bilateral frontal cortices, supplemental motor area, paracentral cortex and right inferior temporal cortex in comparison to behaviorally indexed mind wandering. These findings dissociate subjectively reported and behaviorally indexed mind wandering and suggest that a higher degree of executive control processes are engaged in subjectively reported mind wandering.
    PLoS ONE 01/2011; 6(9):e23124. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The equivalent current density (ECD) model has been previously used in the cardiac electrical imaging technique for non-invasively reconstructing the global activation sequence (AS) in the normal heart. However, its performance in estimating AS in the heart with structural defects remains uncertain. This study aims to evaluate its feasibility in two common cardiac structure diseases--ischemia and infarction, by performing forward simulation using a cellular automaton heart model. The AS was derived from ECD and quantitatively compared to the true AS simulated with the heart model by calculating correlation coefficient (CC) and relative error (RE). In ischemia condition, the ECD model returns a CC (0.97) and RE (0.13), comparable with those of normal heart. In infarction condition, it is also able to identify area of infarction and reconstruct global AS at the excitable myocardium with CC of 0.97 and RE of 0.12. The present pilot simulation results suggest the feasibility of applying ECD model in the pathological heart, which would help the investigation of pathology mechanism and clinical management of cardiac diseases. Noninvasive 3-dimensional (3-D) imaging of cardiac electrical activities is important for facilitating basic cardiovascular research and management of cardiac diseases (1-5). The equivalent current density (ECD) model based 3-D cardiac electrical imaging (3-DCEI) approach has been proposed for the inverse reconstruction of 3-D ventricular activation (5). It is based on the principle that the activation time of normal heart tissue is corresponding to the instant when the time course of ECD reaches maximum at every myocardial site (5). This method has been evaluated in a healthy animal model (6), but it remains unclear that whether it is applicable to heart tissues with structural defects. The purpose of the present study is to test the feasibility of estimating activation sequence (AS) from the time course of ECD in hearts with ischemia and infarction, by means of forward simulation. The ventricular activation was simulated by a cellular automaton heart model and defined as the 'true' activation sequence. The current density at every myocardial unit was constructed accordingly and the activation time for each cellular unit was determined by picking up the time instant corresponding to the peak magnitude of ECD. The estimated AS from ECD time course was then quantitatively compared with the 'true' AS from the cellular automaton heart model.
    01/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-computer interfaces (BCIs) allow a user to interact with a computer system using thought. However, only recently have devices capable of providing sophisticated multi-dimensional control been achieved non-invasively. A major goal for non-invasive BCI systems has been to provide continuous, intuitive, and accurate control, while retaining a high level of user autonomy. By employing electroencephalography (EEG) to record and decode sensorimotor rhythms (SMRs) induced from motor imaginations, a consistent, user-specific control signal may be characterized. Utilizing a novel method of interactive and continuous control, we trained three normal subjects to modulate their SMRs to achieve three-dimensional movement of a virtual helicopter that is fast, accurate, and continuous. In this system, the virtual helicopter's forward-backward translation and elevation controls were actuated through the modulation of sensorimotor rhythms that were converted to forces applied to the virtual helicopter at every simulation time step, and the helicopter's angle of left or right rotation was linearly mapped, with higher resolution, from sensorimotor rhythms associated with other motor imaginations. These different resolutions of control allow for interplay between general intent actuation and fine control as is seen in the gross and fine movements of the arm and hand. Subjects controlled the helicopter with the goal of flying through rings (targets) randomly positioned and oriented in a three-dimensional space. The subjects flew through rings continuously, acquiring as many as 11 consecutive rings within a five-minute period. In total, the study group successfully acquired over 85% of presented targets. These results affirm the effective, three-dimensional control of our motor imagery based BCI system, and suggest its potential applications in biological navigation, neuroprosthetics, and other applications.
    PLoS ONE 01/2011; 6(10):e26322. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain-computer interfaces (BCIs) are devices that allow for thought-based control of computer systems. However, sophisticated control of multi-dimensional BCIs has only recently been achieved in non-invasive systems. The design of these systems has focused on giving users fast, autonomous control that is both intuitive and accurate. Through the use of electroencephalographic recording techniques, sensorimotor rhythms induced from motor imaginations may be captured and a control signal may be characterized. Here we have trained two subjects with an interactive and continuous protocol to modulate their sensorimotor rhythms to control three-dimensions of motion of a virtual helicopter to reach randomly positioned and oriented rings. The subject group acquired 88% of presented targets and achieved as many as 11 consecutive rings in a five-minute period. Subjects learned to fly quickly, continuously and accurately through golden rings positioned and oriented randomly throughout a 3D virtual space.
    Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on; 01/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Localization of the initial site of cardiac ectopic activity has direct clinical benefits for treating focal cardiac arrhythmias. The aim of the present study is to experimentally evaluate the performance of the equivalent moving dipole technique on noninvasively localizing the origin of the cardiac ectopic activity from the recorded body surface potential mapping (BSPM) data in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by either single-site pacing or dual-site pacing within the ventricles. In each pacing study, the initiation sites of cardiac ectopic activity were localized by estimating the locations of a single moving dipole (SMD) or two moving dipoles (TMDs) from the measured BSPM data and compared with the precise pacing sites (PSs). For the single-site pacing, the averaged SMD localization error was 18.6 ± 3.8 mm over 16 sites, while the averaged distance between the TMD locations and the two corresponding PSs was slightly larger (24.9 ± 6.2 mm over five pairs of sites), both occurring at the onset of the QRS complex (10-25 ms following the pacing spike). The obtained SMD trajectories originated near the stimulus site and then traversed across the heart during the ventricular depolarization. The present experimental results show that the initial location of the moving dipole can provide the approximate site of origin of a cardiac ectopic activity in vivo, and that the migration of the dipole can portray the passage of an ectopic beat across the heart.
    IEEE Transactions on Information Technology in Biomedicine 12/2010; · 1.98 Impact Factor
  • Source
    Xu Li, Leo Mariappan, Bin He
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetoacoustic tomography with magnetic induction (MAT-MI) is a hybrid imaging modality proposed to image electrical conductivity contrast of biological tissue with high spatial resolution. This modality combines magnetic excitations with ultrasound detection through the Lorentz force based coupling mechanism. However, previous studies have shown that MAT-MI method with single type of magnetic excitation can only reconstruct the conductivity boundaries of a sample. In order to achieve more complete conductivity contrast reconstruction, we proposed a multiexcitation MAT-MI approach. In this approach, multiple magnetic excitations using different coil configurations are applied to the object sequentially and ultrasonic signals corresponding to each excitation are collected for conductivity image reconstruction. In this study, we validate the new multiexcitation MAT-MI method for three-dimensional (3D) conductivity imaging through both computer simulations and phantom experiments. 3D volume data are obtained by utilizing acoustic focusing and cylindrical scanning under each magnetic excitation. It is shown in our simulation and experiment results that with a common ultrasound probe that has limited bandwidth we are able to correctly reconstruct the 3D relative conductivity contrast of the imaging object. As compared to those conductivity boundary images generated by previous single-excitation MAT-MI, the new multiexcitation MAT-MI method provides more complete conductivity contrast reconstruction, and therefore, more valuable information in possible clinical and research applications.
    Journal of Applied Physics 12/2010; 108(12):124702. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.
    Journal of Neuroscience 11/2010; 30(45):15080-4. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to investigate the use of interictal spikes to localize epileptogenic brain from noninvasive scalp EEG recordings in patients with medically intractable epilepsy. Source reconstructions were performed using a high density electrode montage and a low density electrode montage by means of a distributed source modeling method. The source of interictal spike activity was localized using both a realistic geometry boundary element method (BEM) head model and 3-shell spherical head model. In the analysis of 7 patients, the high density electrode montage was found to provide results more consistent with the suspected region of epileptogenic brain identified for surgical resection using intracranial EEG recordings and structural MRI lesions, as compared to the spatial low density electrode montage used in routine clinical practice. Furthermore, the realistic geometry BEM head model provided better source localization. Our results indicate the merits of using high density scalp EEG recordings and realistic geometry head modeling for source localization of interictal spikes in patients with partial epilepsy. The present results suggest further improvement of source localization accuracy of epileptogenic brain from interictal EEG recorded using high density scalp electrode montage and realistic geometry head models.
    Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 11/2010; 122(6):1098-105. · 3.12 Impact Factor
  • Source
    Leo Mariappan, Xu Li, Bin He
    [Show abstract] [Hide abstract]
    ABSTRACT: We present in this study, an acoustic source reconstruction method using focused transducer with B-mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for noninvasive conductivity imaging with high spatial resolution. In MAT-MI, acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then used to reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in earlier MAT-MI systems to collect acoustic signals. In this study, we propose to use B-mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that as compared to the earlier approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B-scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations, which greatly increases the applicability of the MAT-MI approach, especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method, and the reconstructed image shows a good agreement with the target phantom.
    IEEE transactions on bio-medical engineering 11/2010; 58(3):713-20. · 2.15 Impact Factor

Publication Stats

4k Citations
612.29 Total Impact Points

Institutions

  • 1970–2014
    • University of Minnesota Duluth
      • Department of Psychology
      Duluth, Minnesota, United States
  • 2012
    • Southeast University (China)
      Nan-ching-hsü, Jiangxi Sheng, China
  • 2004–2012
    • University of Minnesota Twin Cities
      • Department of Biomedical Engineering
      Minneapolis, MN, United States
  • 2011
    • University of Oklahoma
      • School of Electrical and Computer Engineering
      Oklahoma City, OK, United States
  • 2005–2011
    • Sapienza University of Rome
      • Department of Computer Science
      Roma, Latium, Italy
    • Foundation Santa Lucia
      Roma, Latium, Italy
  • 2004–2011
    • Zhejiang University
      • College of Electrical Engineering
      Hangzhou, Zhejiang Sheng, China
  • 1995–2011
    • University of Illinois at Chicago
      • • Department of Bioengineering
      • • Department of Electrical and Computer Engineering
      Chicago, Illinois, United States
  • 2009
    • Center for Magnetic Resonance Research Minnesota, USA
      Minneapolis, Minnesota, United States
  • 2008
    • Illinois Institute of Technology
      Chicago, Illinois, United States
  • 2002–2008
    • University of Chicago
      • Department of Pediatrics
      Chicago, IL, United States
  • 2007
    • Jiangsu Polytechnic university
      Wujin, Jiangsu Sheng, China
  • 2002–2007
    • Niigata University
      • Department of Biocybernetics
      Niahi-niigata, Niigata, Japan
  • 2003
    • University of Electronic Science and Technology of China
      Hua-yang, Sichuan, China
    • Illinois Mathematics and Science Academy
      Aurora, Illinois, United States
  • 2001
    • University of Science and Technology of China
      Luchow, Anhui Sheng, China
  • 1995–1998
    • NIHON KOHDEN CORPORATION
      Edo, Tōkyō, Japan
  • 1987–1992
    • Tokyo Institute of Technology
      • Department of Electronics and Applied Physics
      Tokyo, Tokyo-to, Japan
    • Chiba University
      Tiba, Chiba, Japan