Eva Lorenz

University of North Carolina at Chapel Hill, North Carolina, United States

Are you Eva Lorenz?

Claim your profile

Publications (18)152.17 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery.
    Critical care (London, England) 01/2010; 14(3):R103. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calgranulins are a family of powerful chemoattractants, which have been implicated as biomarkers in inflammatory diseases. To determine how different respiratory diseases affect the expression of calgranulins, we measured the expression of S100A8/A9 and S100A12 in bronchoalveolar lavage fluid (BALF) of acute respiratory distress syndrome (ARDS) patients and healthy volunteers by ELISA. Analysis of calgranulin expression revealed a high level of S100A12 in the lavages of patients suffering from ARDS compared to controls (p<0.001). Based on the hypothesis that the increased expression of S100A12 relative to the S100A8/A9 heterodimer was a characteristic of respiratory diseases with neutrophilic inflammation, we measured calgranulin expression in BALF of cystic fibrosis (CF) patients. Despite similarly elevated levels of S100A8/A9, S100A12 was significantly higher in ARDS compared to CF BALF (p<0.001). The differential expression of calgranulins was unique for inflammatory markers, as an array of cytokines did not differ between CF and ARDS patients. Since ARDS is an acute event and CF a chronic inflammation with acute exacerbations, we compared calgranulin expression in sputum obtained from CF and patients with chronic obstructive lung disease (COPD). Levels of S100A12 and S100A8/9 were elevated in CF sputum compared to COPD sputum, but the ratio of S100A12 to S100A8/A9 was similar in COPD and CF and reflected more closely than seen in healthy controls. The results indicate that the regulation of human calgranulin expression and the ratio of S100A8/A9 to S100A12 may provide important insights in the mechanism of respiratory inflammation.
    Respiratory Medicine 04/2008; 102(4):567-73. · 2.59 Impact Factor
  • E Lorenz
    [Show abstract] [Hide abstract]
    ABSTRACT: The family of the toll-like receptors comprises a minimum of 10 members identified in humans so far. These transmembrane receptors act as important signaling intermediates between the host and the invading pathogens. The following review describes the complexities encountered by researchers studying toll-like receptor (TLR) expression changes during bacterial infections. Mutations in some of the TLRs, most prominently TLR4 and TLR2, have been associated with increased susceptibility to infectious diseases. While it is tempting to correct the phenotypic effect of such mutations, in vitro and in vivo research has shown that TLR activity and function comprises a complex regulatory network. Heterodimer formation, synergy, and cross-tolerance have previously been described. More recently, interdependence of TLR2 and TLR4 expression has been identified. In addition, TLR expression follows a specific timeline that may be dependent on the invading pathogen. Lastly, mutations in invading pathogens have been shown to alter the expression profile of TLR2 and TLR4, indicating that therapies against bacterial pathogens will have to target multiple TLRs. Despite the complexities involved in TLR function, the significant progress made in our understanding of the role these proteins play in human diseases also indicates their potential value as therapeutic agents.
    Current pharmaceutical design 02/2006; 12(32):4185-93. · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used a mouse model of acute respiratory infections to investigate the role of Toll-like receptor 2 (TLR2) and TLR4 in the host response to Haemophilus influenzae. Acute aerosol exposures to wild-type strains of H. influenzae showed that TLR4 function was essential for TNF-alpha induction, neutrophil influx, and bacterial clearance. To determine how lipooligosaccharide (LOS) modifications would affect the role of TLR4 in inducing the host response, we used acute infections with an H. influenzae strain expressing a mutation in the htrB gene. This mutant strain expresses an LOS subunit with decreased acylation. In response to H. influenzae htrB infection, tumor necrosis factor alpha (TNF-alpha) secretion remained TLR4 dependent. But the decrease in LOS acylation made the neutrophil influx and the bacterial clearance also dependent on TLR2, as shown by the decreased host response elicited in TLR2 knockout mice compared to C57BL/6 mice. A subsequent analysis of TLR2 and TLR4 gene expression by quantitative PCR indicated that TLR4 function induces TLR2 expression and vice versa. These results indicate that some changes in the LOS subunit of H. influenzae can favor signaling through non-TLR4 receptors, such as TLR2. The results also indicate a close interaction between TLR4 and TLR2 that tightly regulates the expression of both receptors.
    Infection and Immunity 05/2005; 73(4):2075-82. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of pili and associated proteins is an important means of host invasion by bacterial pathogens. Recent evidence has suggested that the binding of Pseudomonas aeruginosa through nonpilus adhesins may also be important in respiratory diseases, since adhesins bind mucins. Using wild-type C57BL/6 and TLR2KO mice, we compared the induction levels of the host response to P. aeruginosa that either expressed pili or lacked pilus expression due to a mutation in the structural gene pilA. In C57BL/6 mice, deletion of pili led to a decreased immune response, evidenced by a lower secretion of cytokines and a lack of neutrophil chemotaxis. By contrast, the P. aeruginosa pilA mutant induced a hyperresponsive phenotype in TLR2KO mice. TLR2KO mice showed an increased number of neutrophils in lavage fluid compared to the levels seen when either mouse strain was exposed to wild-type P. aeruginosa. Further analysis indicated that the increased neutrophil influx was associated with an increased expression of calgranulins, possibly through an induction of Toll-like receptor 4 (TLR4) expression. The hyperresponsive phenotype of TLR2KO mice exposed to the P. aeruginosa pilA mutant was associated with TLR4 induction and indicated that nonpilus adhesin-induced signaling was repressed by TLR2 function and, if not blocked by the host, could induce airway hyperresponsiveness.
    Infection and Immunity 09/2004; 72(8):4561-9. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While transfection of tlr2 conveyed responsiveness to lipoteichoic acid (LTA), the Arg753Gln polymorphic gene could not. LTA induced a stronger chemokine and anti-inflammatory response than lipopolysaccharides did. Blood from heterozygous polymorphic and wild-type donors reacted uniformly to LTA and Staphylococcus aureus. Thus, one functional allele for Toll-like receptor 2 suffices for full cytokine response.
    Infection and Immunity 04/2004; 72(3):1828-31. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system with heterogeneous pathological features, disease courses and genetical backgrounds. In this study we determined whether genetic variants of toll-like receptor (TLR) 4, which confer substantial differences in the inflammation elicited by bacterial lipopolysaccharide, are related to the development of MS. We found no differences in the frequencies of the cosegregating TLR4 Asp299Gly and Thr399Ile polymorphisms between Austrian MS patients (11.6%) and age-matched controls (13.7%). Furthermore, we could not detect any influence of these mutations on clinical parameters and serum levels of soluble adhesion molecules of MS patients. Our data indicate that these TLR4 polymorphisms have no influence on the incidence, progression and inflammatory parameters of MS.
    Tissue Antigens 02/2003; 61(1):85-8. · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Premature birth causes significant health risks of the neonate and increases the cost for neonatal care. Urogenital infection, often caused by Gram-negative bacteria, is a known risk factor. Toll-like receptor-4 (TLR4) is the major endotoxin-signaling receptor and as such is crucial for the initiation of the innate immune response against Gram-negative bacteria. Recently, a variant in the human TLR4 gene was shown to be associated with impaired receptor function and an increased likelihood of Gram-negative sepsis. In the present study, we determined whether the same polymorphism in TLR4 gene is associated with an increased risk for premature birth. We analyzed genotypes for a Finnish study population consisting of a total of 351 term infants and 440 premature infants (gestational age <35 wk; 282 singletons, 158 multiples) and 94 mothers for the presence of the TLR4 polymorphisms Asp299Gly and Thr399Ile. These polymorphisms were in linkage disequilibrium. The 299Gly allele frequencies were 10.6% (93 of 880) in premature infants and 8.3% (58 of 72) in term infants. Excluding multiple pregnancies that often result in premature births, 23.8% (67 of 282) of premature infants and 24.2% (15 of 62) of the mothers of premature infants compared with 15.9% (55 of 345) of term infants and 15.0% (3 of 20) of the mothers delivering at term were carriers of the TLR4 variant. The frequencies of 299Gly allele and Asp/Gly or Gly/Gly genotype carrier status in premature singleton infants were higher than in term singleton infants (p = 0.024, p = 0.028, respectively) or in premature multiples (p = 0.036, p = 0.044, respectively). According to the present results an allelic variation in the TLR4 receptor was associated with increased risk of premature birth.
    Pediatric Research 10/2002; 52(3):373-6. · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial lipopolysaccharides (LPS) activate cells of innate immunity, such as macrophages, by stimulating signaling through toll-like receptor 4 (TLR4). We and others have hypothesized that LPS derived from different bacterial species may function through TLR4-independent mechanisms. To test this hypothesis, we have generated using a nonviral transformation procedure a bone marrow-derived macrophage cell line called 10ScNCr/23 from mouse strain C57BL/10ScNCr. This mouse strain has a deletion of the TLR4 locus, causing the mouse strain to be nonresponsive to stimulation by LPS from Escherichia coli while responding normally to other bacterial substrates, such as lipoteichoic acid (LTA) from Staphylococcus aureus, which signal TLR4 independently. Stimulation with LTA induces five- and sixfold increases in 10ScNCr/23 cell line tumor necrosis factor alpha and macrophage inflammatory protein-2 (MIP-2) secretion, but no increases in either cytokine were found when cells were stimulated with E. coli LPS. Bacteroides fragilis-derived LPS, however, can effectively stimulate MIP-2 expression in the absence of functional TLR4 in the 10ScNCr/23 cell line. This gives rise to the notion that LPS from some bacterial species will utilize alternative receptors to stimulate the innate immune response.
    Infection and Immunity 10/2002; 70(9):4892-6. · 4.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to mount a prominent inflammatory response to bacterial pathogens confers an advantage in innate immune defense but may signal an increased risk of atherosclerosis. We determined whether recently discovered genetic variants of toll-like receptor 4 (TLR4) that confer differences in the inflammatory response elicited by bacterial lipopolysaccharide are related to the development of atherosclerosis. As part of the five-year follow-up in the Bruneck (Italy) Study, we screened 810 persons in the study cohort for the TLR4 polymorphisms Asp299Gly and Thr399Ile. The extent and progression of carotid atherosclerosis were assessed by high-resolution duplex ultrasonography. As compared with subjects with wild-type TLR4, the 55 subjects with the Asp299Gly TLR4 allele had lower levels of certain proinflammatory cytokines, acute-phase reactants, and soluble adhesion molecules, such as interleukin-6 and fibrinogen. Although these subjects were found to be more susceptible to severe bacterial infections, they had a lower risk of carotid atherosclerosis (odds ratio, 0.54; 95 percent confidence interval, 0.32 to 0.98; P=0.05) and a smaller intima-media thickness in the common carotid artery (regression coefficient, -0.07; 95 percent confidence interval, -0.12 to -0.02; P=0.01). The Asp299Gly TLR4 polymorphism, which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with a decreased risk of atherosclerosis. This finding is consistent with the hypothesis that innate immunity may play a part in atherogenesis.
    New England Journal of Medicine 08/2002; 347(3):185-92. · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Septic shock remains a significant health concern worldwide, and despite progress in understanding the physiological and molecular basis of septic shock, the high mortality rate of patients with septic shock remains unchanged. We recently identified a common polymorphism in toll-like receptor 4 (TLR4) that is associated with hyporesponsiveness to inhaled endotoxin or lipopolysaccharide in humans. Since TLR4 is a major receptor for lipopolysaccharide in mammals and gram-negative bacteria are the prevalent pathogen associated with septic shock, we investigated whether these specific TLR4 alleles are associated with a predisposition to a more severe disease outcome for patients with septic shock. We genotyped 91 patients with septic shock as well as 73 healthy blood donor controls for the presence of the TLR4 Asp299Gly and TLR4 Thr399Ile mutations. We found the TLR4 Asp299Gly allele exclusively in patients with septic shock (P =.05). Furthermore, patients with septic shock with the TLR4 Asp299Gly/Thr399Ile alleles had a higher prevalence of gram-negative infections. Mutations in the TLR4 receptor may predispose people to develop septic shock with gram-negative microorganisms.
    Archives of Internal Medicine 06/2002; 162(9):1028-32. · 11.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For several decades, the mouse strains C3H/HeJ and C57BL/10ScNCr have been known to be hyporesponsive to endotoxin or lipopolysaccharide (LPS). Recently, mutations in Toll-like receptor (TLR) 4 have been shown to underlie this aberrant response to LPS. To further determine the relationship between TLR4 and responsiveness to LPS, we genotyped 18 strains of mice for TLR4 and evaluated the physiological and biological responses of these strains to inhaled LPS. Of the 18 strains tested, 6 were wild type for TLR4 and 12 had mutations in TLR4. Of those strains with TLR4 mutations, nine had mutations in highly conserved residues. Among the strains wild type for TLR4, the inflammatory response in the airway induced by inhalation of LPS showed a phenotype ranging from very sensitive (DBA/2) to hyporesponsive (C57BL/6). A broad spectrum of airway hyperreactivity after inhalation of LPS was also observed among strains wild type for TLR4. Although the TLR4 mutant strains C3H/HeJ and C57BL/10ScNCr were phenotypically distinct from the other strains with mutations in the TLR4 gene, the other strains with mutations for TLR4 demonstrated a broad distribution in their physiological and biological responses to inhaled LPS. The results of our study indicate that although certain TLR4 mutations can be linked to a change in the LPS response phenotype, additional genes are clearly involved in determining the physiological and biological responses to inhaled LPS in mammals.
    AJP Lung Cellular and Molecular Physiology 12/2001; 281(5):L1106-14. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For several decades, the mouse strains C3H/HeJ and C57BL/10ScNCr have been known to be hyporesponsive to endotoxin or lipopolysaccharide (LPS). Recently, mutations in Toll-like receptor (TLR) 4 have been shown to underlie this aberrant response to LPS. To further determine the relationship between TLR4 and responsiveness to LPS, we genotyped 18 strains of mice for TLR4 and evaluated the physiological and biological responses of these strains to inhaled LPS. Of the 18 strains tested, 6 were wild type for TLR4 and 12 had mutations in TLR4. Of those strains with TLR4 mutations, nine had mutations in highly conserved residues. Among the strains wild type for TLR4, the inflammatory response in the airway induced by inhalation of LPS showed a phenotype ranging from very sensitive (DBA/2) to hyporesponsive (C57BL/6). A broad spectrum of airway hyperreactivity after inhalation of LPS was also observed among strains wild type for TLR4. Although the TLR4 mutant strains C3H/HeJ and C57BL/ 10ScNCr were phenotypically distinct from the other strains with mutations in the TLR4 gene, the other strains with mutations for TLR4 demonstrated a broad distribution in their physiological and biological responses to inhaled LPS. The results of our study indicate that although certain TLR4 mutations can be linked to a change in the LPS response phenotype, additional genes are clearly involved in determining the physiological and biological responses to inhaled LPS in mammals.
    AJP Lung Cellular and Molecular Physiology 11/2001; 281(29):1106-1114. · 3.52 Impact Factor
  • E Lorenz, K L Frees, D A Schwartz
    BioTechniques 08/2001; 31(1):22-4. · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipopolysaccharide (LPS) has been implicated in the pathogenesis of graft-versus-host disease (GVHD). The toll-like receptor (TLR)-4 has been recently identified as a major receptor for LPS. Mutations of TLR4 have been associated with LPS hyporesponsiveness. We hypothesized that TLR4 mutations reduce the risk of acute GVHD in allogeneic marrow transplant recipients. In a preliminary study to determine the frequency of TLR4 mutations and their possible association with GVHD, we tested 237 patients and their HLA-identical sibling donors for 2 TLR4 polymorphisms. All patients received methotrexate and cyclosporine for GVHD prophylaxis. One or more mutants were detected in 10.8% of patients and 10.6% of donors. Multivariable logistic regression models were used to analyze the association between TLR4 mutations and probability (1-sided) of GVHD. The odds ratio (adjusted for advanced disease, total body irradiation dose, and patient age) for development of grades II to IV GVHD when a mutation was present in the recipient was 0.63 (95% confidence interval [CI], 0.25-1.60; P = .16). When a mutation was present in the donor, the adjusted odds ratio was 0.88 (95% CI, 0.36-2.17; P = .40). When a mutation was present in both recipient and donor, the odds ratio was 0.72 (95% CI, 0.22-2.32; P = .29). Among 24 patients with TLR4 mutations in either donor or recipient, 4 (16.7%) developed gram-negative bacteremia. Among 213 patients without mutations, 14 (6.6%) developed gram-negative bacteremia (P = .09). The data indicate that a reduced risk of acute GVHD is associated with TLR4 mutations and that TLR4 mutations may increase the risk for gram-negative bacteremia. However, these associations are not statistically significant in recipients of HLA-matched sibling marrow transplants who are prophylactically treated for infections and GVHD. A much larger study population would be needed to confirm the role of LPS in the pathogenesis of GVHD in humans.
    Biology of Blood and Marrow Transplantation 02/2001; 7(7):384-7. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The toll-like receptor 2 (TLR2) has gained importance as a major mammalian receptor for lipoproteins derived from the cell wall of a variety of bacteria, such as Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans. We were interested in identifying mutations in the TLR2 gene that might prove to be associated with altered susceptibility to septic shock. We performed a mutation screen of the TLR2 gene using single-stranded conformational polymorphism in 110 normal, healthy study subjects and detected an Arg753Gln mutation in three individuals. No other missense mutations were detected in the TLR2 open reading frame. Functional studies demonstrate that the Arg753Gln polymorphism, in comparison to the wild-type TLR2 gene, is significantly less responsive to bacterial peptides derived from B. burgdorferi and T. pallidum. In a septic shock population, the Arg753Gln TLR2 polymorphism occurred in 2 out of 91 septic patients. More importantly, both of the subjects with the TLR2 Arg753Gln polymorphism had staphylococcal infections. These findings suggest that a mutation in the TLR2 gene may predispose individuals to life-threatening bacterial infections.
    Infection and Immunity 12/2000; 68(11):6398-401. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is much variability between individuals in the response to inhaled toxins, but it is not known why certain people develop disease when challenged with environmental agents and others remain healthy. To address this, we investigated whether TLR4 (encoding the toll-like receptor-4), which has been shown to affect lipopolysaccharide (LPS) responsiveness in mice, underlies the variability in airway responsiveness to inhaled LPS in humans. Here we show that common, co-segregating missense mutations (Asp299Gly and Thr399Ile) affecting the extracellular domain of the TLR4 receptor are associated with a blunted response to inhaled LPS in humans. Transfection of THP-1 cells demonstrates that the Asp299Gly mutation (but not the Thr399Ile mutation) interrupts TLR4-mediated LPS signalling. Moreover, the wild-type allele of TLR4 rescues the LPS hyporesponsive phenotype in either primary airway epithelial cells or alveolar macrophages obtained from individuals with the TLR4 mutations. Our findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene-sequence changes can alter the ability of the host to respond to environmental stress.
    Nature Genetics 07/2000; 25(2):187-91. · 35.21 Impact Factor

Publication Stats

3k Citations
152.17 Total Impact Points

Institutions

  • 2005–2010
    • University of North Carolina at Chapel Hill
      • • Thurston Arthritis Research Center
      • • Department of Pediatrics
      North Carolina, United States
  • 2004
    • Wake Forest University
      • Department of Internal Medicine
      Winston-Salem, North Carolina, United States
  • 2002–2003
    • University of Innsbruck
      • Institute of Biochemistry
      Innsbruck, Tyrol, Austria
    • Wake Forest School of Medicine
      • • Section of Molecular Medicine
      • • Department of Internal Medicine
      Winston-Salem, North Carolina, United States
  • 2001–2002
    • Duke University Medical Center
      • Department of Medicine
      Durham, North Carolina, United States
  • 2000
    • University of Iowa
      Iowa City, Iowa, United States