Ninghai Wang

Beth Israel Deaconess Medical Center, Boston, MA, United States

Are you Ninghai Wang?

Claim your profile

Publications (28)255.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8(+) T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6](-/-) and Slamf[1 + 5 + 6](-/-) B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8(+) T cells slightly increased in the Slamf[1 + 5 + 6](-/-) , but not in the Slamf[1 + 6](-/-) strain, suggesting that Slamf5 may function as a negative regulator of innate CD8(+) T cell development. Accordingly, Slamf5(-/-) B6 mice showed an exclusive expansion of innate CD8(+) T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7(-/-) strain showed an expansion of both splenic innate CD8(+) T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3(-/-) BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZF(hi)) NKT cells and innate CD8(+) T cells significantly increased in the SAP-independent Slamf8(-/-) BALB/c strain. In summary, these results show that NKT and innate CD8(+) T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8(+) T cells.
    Frontiers in Immunology 01/2014; 5:186.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detailed understanding of the signaling intermediates that confer the sensing of intracellular viral nucleic acids for induction of type I interferons is critical for strategies to curtail viral mechanisms that impede innate immune defenses. Here we show that the activation of the microtubule-associated guanine nucleotide exchange factor GEF-H1, encoded by Arhgef2, is essential for sensing of foreign RNA by RIG-I-like receptors. Activation of GEF-H1 controls RIG-I-dependent and Mda5-dependent phosphorylation of IRF3 and induction of IFN-β expression in macrophages. Generation of Arhgef2(-/-) mice revealed a pronounced signaling defect that prevented antiviral host responses to encephalomyocarditis virus and influenza A virus. Microtubule networks sequester GEF-H1 that upon activation is released to enable antiviral signaling by intracellular nucleic acid detection pathways.
    Nature Immunology 11/2013; · 26.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The costimulatory receptor Slamf6 partially controls lupus-related autoimmunity in congenic Sle1b mice; for instance, the presence of the protein isoform Slamf6-H1 in Sle1b.Slamf6-H1 mice mitigates disease. Here, we report that young Sle1b mice, but not Sle1b.Slamf6-H1 or B6 mice, contain a memory T-helper cell subset identified by ]mt]2-fold increase in expression of 17 genes, chief among which is Spp1, encoding the cytokine osteopontin (OPN). These T follicular helper (TFH) cells, including OPN(+) TFH cells, expand concomitantly with severity of the disease. By contrast, Sle1b.Slamf6-H1 or Sle1b.SAP(--) mice do not develop autoantibodies and the number of TFH cells is 5 times lower than in age-matched Sle1b mice. By comparing Sle1b and Sle1b.OPN(--) mice, we find that the lack of OPN expression impedes early autoantibody production. Furthermore, on the adoptive transfer of Sle1b.OPN(--) CD4(+) T cells into bm12 recipients autoantibody production and germinal center formation is reduced compared to recipients of Sle1b.OPN(+/+) CD4(+) T cells. We propose a model in which OPN provides a survival signal for a precursor TFH cell subset, which is a key factor in autoimmunity. Keszei, M., Detre, C., Castro, W., Magelky, E., O'Keeffe, M., Kis-Toth, K., Tsokos, G. C., Wang, N., Terhorst, C. Expansion of an osteopontin-expressing T follicular helper cell subset correlates with autoimmunity in B6.Sle1b mice and is suppressed by the H1-isoform of the Slamf6 receptor.
    The FASEB Journal 04/2013; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND & AIMS: Signaling lymphocyte activation molecule (Slamf)1 is a co-stimulatory receptor on T cells and regulates cytokine production by macrophages and dendritic cells. Slamf1 regulates microbicidal mechanisms in macrophages, therefore we investigated whether the receptor affects development of colitis in mice. METHODS: We transferred CD45RB(hi) CD4(+) T cells into Rag(-/-) or Slamf1(-/-)Rag(-/-) mice to induce colitis. We also induced colitis by injecting mice with an antibody that activates CD40. We determined the severity of enterocolitis based on disease activity index, histology scores, and levels of cytokine production, and assessed the effects of antibodies against Slamf1 on colitis induction. We quantified migration of monocytes and macrophage to inflamed tissues upon induction of colitis or thioglycollate-induced peritonitis and in response to tumor necrosis factor-α in an air-pouch model of leukocyte migration. RESULTS: Colitis was reduced in Slamf1(-/-)Rag(-/-) mice, compared with Rag(-/-) mice, after transfer of CD45RB(hi) CD4(+) T cells or administration of the CD40 agonist. The numbers of monocytes and macrophages were reduced in inflamed tissues of Slamf1(-/-)Rag(-/-) mice, compared with Rag(-/-) mice, after induction of colitis and other inflammatory disorders. An antibody that inhibited Slamf1 reduced the level of enterocolitis in Rag(-/-) mice. CONCLUSIONS: Slamf1 contributes to the development of colitis in mice. It appears to indirectly regulate the appearance of monocytes and macrophages in inflamed intestinal tissues. Antibodies that inhibit Slamf1 reduce colitis in mice, so human SLAMF1 might be a therapeutic target for inflammatory bowel disease.
    Gastroenterology 09/2012; · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the manifestations of X-linked lymphoproliferative disease (XLP) is progressive agammaglobulinemia, caused by the absence of a functional signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in T, invariant natural killer T (NKT) cells and NK cells. Here we report that α-galactosylceramide (αGalCer) activated NKT cells positively regulate antibody responses to haptenated protein antigens at multiple checkpoints, including germinal center formation and affinity maturation. Whereas NKT cell-dependent B cell responses were absent in SAP(-/-).B6 mice that completely lack NKT cells, the small number of SAP-deficient NKT cells in SAP(-/-).BALB/c mice adjuvated antibody production, but not the germinal center reaction. To test the hypothesis that SAP-deficient NKT cells can facilitate humoral immunity, SAP was deleted after development in SAP(fl/fl).tgCreERT2.B6 mice. We find that NKT cell intrinsic expression of SAP is dispensable for noncognate helper functions, but is critical for providing cognate help to antigen-specific B cells. These results demonstrate that SLAM-family receptor-regulated cell-cell interactions are not limited to T-B cell conjugates. We conclude that in the absence of SAP, several routes of NKT cell-mediated antibody production are still accessible. The latter suggests that residual NKT cells in XLP patients might contribute to variations in dysgammaglobulinemia.
    Blood 05/2012; 120(1):122-9. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Slamf8 (CD353) is a cell surface receptor that is expressed upon activation of macrophages (MΦs) by IFN-γ or bacteria. In this article, we report that a very high NADPH oxidase (Nox2) enzyme activity was found in Slamf8(-/-) MΦs in response to Escherichia coli or Staphylococcus aureus, as well as to PMA. The elevated Nox2 activity in Slamf8(-/-) MΦs was also demonstrated in E. coli or S. aureus phagosomes by using a pH indicator system and was further confirmed by a reduction in the enzyme activity after transfection of the receptor into Slamf8-deficient primary MΦs or RAW 264.7 cells. Upon exposure to bacteria or PMA, protein kinase C activity in Slamf8(-/-) MΦs is increased. This results in an enhanced phosphorylation of p40phox, one key component of the Nox2 enzyme complex, which, in turn, leads to greater Nox2 activity. Taken together, the data show that, in response to inflammation-associated stimuli, the inducible receptor Slamf8 negatively regulates inflammatory responses.
    The Journal of Immunology 05/2012; 188(12):5829-32. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phagocytosis is a pivotal process by which macrophages eliminate microorganisms upon recognition by pathogen sensors. Surprisingly, the self-ligand cell surface receptor Slamf1 functions not only as a co-stimulatory molecule but also as a microbial sensor of several Gram-negative bacteria. Upon entering the phagosome of macrophages Slamf1 induces production of phosphatidylinositol 3-phosphate, which positively regulates the activity of the NOX2 enzyme and phagolysosomal maturation. Here, we report that in Escherichia coli-containing phagosomes of mouse macrophages, Slamf1 interacts with the class III PI3K Vps34 in a complex with Beclin-1 and UVRAG. Upon phagocytosis of bacteria the NOX2 activity was reduced in macrophages isolated from Beclin-1(+/-) mice compared with wild-type mice. This Slamf1/Beclin-1/Vps34/UVRAG protein complex is formed in intracellular membrane compartments as it is found without inducing phagocytosis in macrophages, human chronic lymphocytic leukemia cells, and transfectant HEK293 cells. Elimination of its cytoplasmic tail abolished the interaction of Slamf1 with the complex, but deletion or mutation of the two ITAM motifs did not. Both the BD and CCD domains of Beclin-1 were required for efficient binding to Slamf1. Because Slamf1 did not interact with Atg14L or Rubicon, which can also form a complex with Vps34 and Beclin-1, we conclude that Slamf1 recruits a subset of Vps34-associated proteins, which is involved in membrane fusion and NOX2 regulation.
    Journal of Biological Chemistry 04/2012; 287(22):18359-65. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of individual molecular aberrations to the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease that affects multiple organs, is often difficult to evaluate because of the presence of abundant confounding factors. To assess the effect of increased expression of the phosphatase protein phosphatase 2A (PP2A) in T cells, as recorded in SLE patients, we generated a transgenic mouse that overexpresses the PP2Ac subunit in T cells. The transgenic mouse displays a heightened susceptibility to immune-mediated glomerulonephritis in the absence of other immune defects. CD4(+) T cells produce increased amounts of IL-17 while the number of neutrophils in the peripheral blood is increased. IL-17 neutralization abrogated the development of glomerulonephritis. We conclude that increased PP2Ac expression participates in SLE pathogenesis by promoting inflammation through unchecked IL-17 production and facilitating the development of end-organ damage.
    The Journal of Immunology 03/2012; 188(8):3567-71. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several genes within a syntenic region of human and mouse chromosome 1 are associated with predisposition to systemic lupus erythematosus. Analyses of lupus-prone congenic mice have pointed to an important role for the signaling lymphocyte activation molecule family (slamf)6 surface receptor in lupus pathogenesis. In this article, we demonstrate that a second member of the Slamf gene family, Slamf4 (Cd244), contributes to lupus-related autoimmunity. B6.Slamf4(-/-) mice spontaneously develop activated CD4 T cells and B cells and increased numbers of T follicular helper cells and a proportion develop autoantibodies to nuclear Ags. B6.Slamf4(-/-) mice also exhibit markedly increased autoantibody production in the B6.C-H-2bm12/KhEg → B6 transfer model of lupus. Although slamf4 function is best characterized in NK cells, the enhanced humoral autoimmunity of B6.Slamf4(-/-) mice is NK cell independent, as judged by depletion studies. Taken together, our findings reveal that slamf4 has an NK cell-independent negative regulatory role in the pathogenesis of lupus a normally non-autoimmune prone genetic background.
    The Journal of Immunology 07/2011; 187(1):21-5. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of human systemic lupus erythematosus patients and of murine congenic mouse strains associate genes in a DNA segment on chromosome 1 with a genetic predisposition for this disease. The systematic analysis of lupus-prone congenic mouse strains suggests a role for two isoforms of the Ly108 receptor in the pathogenesis of the disease. In this study, we demonstrate that Ly108 is involved in the pathogenesis of lupus-related autoimmunity in mice. More importantly, we identified a third protein isoform, Ly108-H1, which is absent in two lupus-prone congenic animals. Introduction of an Ly108-H1-expressing transgene markedly diminishes T cell-dependent autoimmunity in congenic B6.Sle1b mice. Thus, an immune response-suppressing isoform of Ly108 can regulate the pathogenesis of lupus.
    Journal of Experimental Medicine 03/2011; 208(4):811-22. · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several genes in an interval of human and mouse chromosome 1 are associated with a predisposition for systemic lupus erythematosus. Congenic mouse strains that contain a 129-derived genomic segment, which is embedded in the B6 genome, develop lupus because of epistatic interactions between the 129-derived and B6 genes, e.g. in B6.129chr1b mice. If a gene that is located on chromosome 1 is altered through homologous recombination in 129-derived embryonic stem cells (ES cells) and if the resultant knockout mouse is backcrossed with B6, interpretation of the phenotype of the mutant mouse may be affected by epistatic interactions between the 129 and B6 genomes. Here, we report that knockout mice of two adjacent chromosome 1 genes, Slamf1(-/-) and Slamf2(-/-), which were generated with the same 129-derived ES cell line, develop features of lupus, if backcrossed on to the B6 genetic background. By contrast, Slamf1(-/-) [BALB/c.129] and Slamf2(-/-) [BALB/c.129] do not develop disease. Surprisingly, Slamf1(-/-) [B6.129] mice develop both auto-antibodies and glomerulonephritis between 3 and 6 months of age, while disease fully develops in Slamf1(-/-) [B6.129] mice after 9-14 months. Functional analyses of CD4(+) T cells reveals that Slamf2(-/-) T cells are resistant to tolerance induction in vivo. We conclude that the Slamf2(-/-) mutation may have a unique influence on T-cell tolerance and lupus.
    International Immunology 02/2011; 23(2):149-58. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EWS/FLI1-activated transcript 2 (EAT-2)A and EAT-2B are single SH2-domain proteins, which bind to phosphorylated tyrosines of signaling lymphocyte activation molecule family receptors in murine NK cells. While EAT-2 is a positive regulator in human cells, a negative regulatory role was attributed to the adapter in NK cells derived from EAT-2A-deficient 129Sv mice. To evaluate whether the genetic background or the presence of a selection marker in the mutant mice could influence the regulatory mode of these adapters, we generated EAT-2A-, EAT-2B-, and EAT-2A/B-deficient mice using C57BL/6 embryonic stem cells. We found that NK cells from EAT-2A- and EAT-2A/B-deficient mice were unable to kill tumor cells in a CD244- or CD84-dependent manner. Furthermore, EAT-2A/B positively regulate phosphorylation of Vav-1, which is known to be implicated in NK cell killing. Thus, as in humans, the EAT-2 adapters act as positive regulators of signaling lymphocyte activation molecule family receptor-specific NK cell functions in C57BL/6 mice.
    The Journal of Immunology 10/2010; 185(10):5683-7. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phagocytosis is a pivotal process by which macrophages eliminate microorganisms after recognition by pathogen sensors. Here we unexpectedly found that the self ligand and cell surface receptor SLAM functioned not only as a costimulatory molecule but also as a microbial sensor that controlled the killing of gram-negative bacteria by macrophages. SLAM regulated activity of the NADPH oxidase NOX2 complex and phagolysosomal maturation after entering the phagosome, following interaction with the bacterial outer membrane proteins OmpC and OmpF. SLAM recruited a complex containing the intracellular class III phosphatidylinositol kinase Vps34, its regulatory protein kinase Vps15 and the autophagy-associated molecule beclin-1 to the phagosome, which was responsible for inducing the accumulation of phosphatidylinositol-3-phosphate, a regulator of both NOX2 function and phagosomal or endosomal fusion. Thus, SLAM connects the gram-negative bacterial phagosome to ubiquitous cellular machinery responsible for the control of bacterial killing.
    Nature Immunology 10/2010; 11(10):920-7. · 26.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B. These adapters in turn bind to the tyrosine kinase Fyn and/or other protein tyrosine kinases connecting the receptors to signal transduction networks. Individuals deficient in the SAP gene, SH2D1A, develop an immunodeficiency syndrome: X-linked lympho-proliferative disease. In addition to operating in the immune synapse, SLAM receptors initiate or partake in multiple effector functions of hematopoietic cells, for example, neutrophil and macrophage killing and platelet aggregation. Here we discuss the current understanding of the structure and function of these recently discovered receptors and adapter molecules in the regulation of adaptive and innate immune responses.
    Advances in Immunology 02/2008; 97:177-250. · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MHC class II-expressing double-positive thymocytes induce progression of CD4(+) T cell development as efficiently as cortical thymic epithelial cells do. Because double-positive thymocytes expressing CD1d select natural killer T (NKT) cells, we investigated whether thymocyte-selected CD4(+) (T-CD4) T cells require the same signaling components as NKT cells. Using bone-marrow chimeras, we found that the signaling molecules SAP, Fyn, and PKCtheta were essential for T-CD4 T cell generation, whereas mutations in the Ly108 receptor, interleukin-15 receptor alpha, or the transcription factor T-bet had a marginal effect. Furthermore, SAP was critical for IL-4 production by T-CD4 T cells, but the PKCtheta deficiency did not alter the ability of T-CD4 T cells to produce cytokines. T-bet was necessary to produce the maximum amount of IFN-gamma for CD4(+) T cells regardless of the selection pathway. Thus, in contrast to epithelial cell-selected CD4(+) T cells, the two distinct lineages of T cells selected by thymocytes--i.e., T-CD4 and NKT cells--both utilize the SAP-Fyn-PKCtheta pathway for their development and function.
    Immunity 12/2007; 27(5):763-74. · 19.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Commitment to the T and natural killer T (NKT) cell lineages is determined during alphabeta T cell receptor (TCR)-mediated interactions of common precursors with ligand-expressing cells in the thymus. Whereas mainstream thymocyte precursors recognize major histocompatibility complex (MHC) ligands expressed by stromal cells, NKT cell precursors interact with CD1d ligands expressed by cortical thymocytes. Here, we demonstrated that such homotypic T-T interactions generated "second signals" mediated by the cooperative engagement of the homophilic receptors Slamf1 (SLAM) and Slamf6 (Ly108) and the downstream recruitment of the adaptor SLAM-associated protein (SAP) and the Src kinase Fyn, which are essential for the lineage expansion and differentiation of the NKT cell lineage. These receptor interactions were required during TCR engagement and therefore only occurred when selecting ligands were presented by thymocytes rather than epithelial cells, which do not express Slamf6 or Slamf1. Thus, the topography of NKT cell ligand recognition determines the availability of a cosignaling pathway that is essential for NKT cell lineage development.
    Immunity 12/2007; 27(5):751-62. · 19.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humans lacking the CD3gamma subunit of the pre-TCR and TCR complexes exhibit a mild alphabeta T lymphopenia, but have normal T cells. By contrast, CD3gamma-deficient mice are almost devoid of mature alphabeta T cells due to an early block of intrathymic development at the CD4(-)CD8(-) double-negative (DN) stage. This suggests that in humans but not in mice, the highly related CD3delta chain replaces CD3gamma during alphabeta T-cell development. To determine whether human CD3delta (hCD3delta) functions in a similar manner in the mouse in the absence of CD3gamma, we introduced an hCD3delta transgene in mice that were deficient for both CD3delta and CD3gamma, in which thymocyte development is completely arrested at the DN stage. Expression of hCD3delta efficiently supported pre-TCR-mediated progression from the DN to the CD4(+)CD8(+) double-positive (DP) stage. However, alphabetaTCR-mediated positive and negative thymocyte selection was less efficient than in wild-type mice, which correlated with a marked attenuation of TCR-mediated signaling. Of note, murine CD3gamma-deficient TCR complexes that had incorporated hCD3delta displayed abnormalities in structural stability resembling those of T cells from CD3gamma-deficient humans. Taken together, these data demonstrate that CD3delta and CD3gamma play a different role in humans and mice in pre-TCR and TCR function during alphabeta T-cell development.
    Blood 12/2006; 108(10):3420-7. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-cell activation plays an essential role in the generation of the pulmonary inflammation that is manifest in allergic asthma. Optimal T-cell activation requires not only presentation of antigen with the major histocompatibility complex, but also concurrent signaling through costimulatory molecules. The costimulatory molecule SLAM (Signaling Lymphocytic Activation Molecule, CD150) is a glycoprotein expressed on activated lymphocytes and antigen-presenting cells. Disruption of the SLAM gene demonstrated that SLAM-induced signal transduction pathways regulate cytokine production by T helper (Th)2 cells and macrophages. Here we tested the postulate that the costimulatory molecule SLAM may be critical for allergic inflammation in a murine model. SLAM-deficient mice did not manifest allergen-induced bronchoalveolar lavage eosinophilia, increased serum IgE, or heightened airway responses compared with wild-type mice. Allergen-induced Th2 cytokines and Th1 cytokines were decreased in SLAM-deficient mice. These data support the concept that SLAM plays a crucial role in allergic responses.
    American Journal of Respiratory Cell and Molecular Biology 09/2006; 35(2):206-10. · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP.
    Immunogenetics 03/2006; 58(1):15-25. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling lymphocyte activation molecule (SLAM), a glycoprotein expressed on activated lymphocytes and antigen-presenting cells, has been shown to be a coregulator of antigen-driven T cell responses and is one of the two receptors for measles virus. Here we show that T cell receptor-induced interleukin (IL)-4 secretion by SLAM(-/-) CD4(+) cells is down-regulated, whereas interferon gamma production by CD4(+) T cells is only slightly up-regulated. Although SLAM controls production of IL-12, tumor necrosis factor, and nitric oxide in response to lipopolysaccharide (LPS) by macrophages, SLAM does not regulate phagocytosis and responses to peptidoglycan or CpG. Thus, SLAM acts as a coreceptor that regulates signals transduced by the major LPS receptor Toll-like receptor 4 on the surface of mouse macrophages. A defective macrophage function resulted in an inability of SLAM(-/-) C57Bl/6 mice to remove the parasite Leishmania major. We conclude that the coreceptor SLAM plays a central role at the interface of acquired and innate immune responses.
    Journal of Experimental Medicine 06/2004; 199(9):1255-64. · 13.21 Impact Factor