Satoshi Yamamura

Mie University, Tsu-shi, Mie-ken, Japan

Are you Satoshi Yamamura?

Claim your profile

Publications (15)53.44 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: Anticonvulsants have been developed according to the traditional neurotransmission imbalance hypothesis; however, the currently available anticonvulsive pharmacotherapy remains unsatisfactory. To develop new antiepileptic drugs with novel antiepileptic mechanisms, the present study tested the antiepileptic actions of ONO-2506, a glial modulating agent, and its effects on tripartite synaptic transmission. Experimental approach: The dose-dependent effects of ONO-2506 on maximal-electroshock seizure (MES), pentylenetetrazol-induced seizure (PTZ) and epileptic discharge were determined in genetic absence epilepsy model mice (Cacna1a(tm2Nobs/tm2Nobs) ). The antiepileptic mechanisms of ONO-2506 were analyzed by examining the interaction between ONO-2506 and transmission-modulating toxins (tetanus-toxin, fluorocitrate, tetrodotoxin) on the release of L-glutamate, D-serine, GABA and kynurenic acid in medial-prefrontal cortex (mPFC) of freely moving rats using microdialysis and primary cultured rat astrocytes. Key results: ONO-2506 inhibited spontaneous epileptic discharges in Cacna1a(tm2Nobs/tm2Nobs) without affecting MES or PTZ. Systemic administration of ONO-2506 increased basal releases of GABA and kynurenic acid in the mPFC through the activation of both neuronal and glial-exocytosis, but inhibited depolarization-induced releases of all transmitters. ONO-2506 increased basal glial-release of kynurenic acid without affecting those of L-glutamate, D-serine or GABA. However, ONO-2506 inhibited AMPA-induced releases of L-glutamate, D-serine, GABA and kynurenic acid. Conclusions and Implications: The results indicate that ONO-2506 did not affect traditional convulsive tests, but markedly inhibited the epileptic phenomena in the genetic epilepsy mouse model. ONO-2506 enhanced the release of inhibitory neuro- and glio-transmitters at resting stage, and inhibited the tripartite transmission during hyperactive stage. The results suggest that ONO-2506 is a novel potential glial-targeting antiepileptic drug. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
    British Journal of Pharmacology 08/2012; · 5.07 Impact Factor
  • The Journal of neuropsychiatry and clinical neurosciences 06/2012; 24(3):10009. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of systemic δ1-agonist on neurotransmission remains obscure, since no selective δ1-agonist exists that can penetrate the blood-brain barrier. Recently, we succeeded in synthesizing a putative δ1-receptor agonist, KNT-127, which has been demonstrated the effectiveness of systemic administration against anxiety and depressive-like behavior. To clarify the functional selectivity of KNT-127 and neurotransmission regulating system of δ1-receptor, the present study investigated the interaction between KNT-127 and δ-receptor antagonists on the release of dopamine, L-glutamate and GABA in nucleus accumbens (NAc), striatum and median pre-frontal cortex (mPFC) using multi-probe microdialysis. Intraperitoneal administration of KNT-127 increased the release of dopamine and L-glutamate in three regions, but decreased and increased GABA releases in respective NAc and mPFC without affecting that in striatum. The effects of KNT-127 in the three regions were abrogated by δ1-antagonist but not by δ2-antagonist. MK801 inhibited KNT-127-induced dopamine release in striatum and NAc, but enhanced that in mPFC, inhibited KNT-127-induced mPFC GABA release without affecting KNT-127-induced GABA reduction in NAc. Muscimol enhanced KNT-127-induced dopamine release in mPFC. Sulpiride inhibited KNT-127-induced reduction of GABA release in NAc. The results indicated that KNT-127 is a selective δ1-agonist, and suggested that δ1-receptor directly activates the release of dopamine and L-glutamate in the striatum, NAc and mPFC, but not that of GABA in the three regions. δ1-receptor indirectly inhibited GABA release in NAc via activated dopaminergic transmission, while δ1-receptor indirectly enhanced GABA release in mPFC via activated glutamatergic transmission.
    Neuropharmacology 04/2012; 62(5-6):2057-67. · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To define the antiepileptic mechanisms of levetiracetam (LEV), the present study determined the concentration-dependent effects of locally perfused LEV on the releases of norepinephrine, dopamine, serotonin, l-glutamate and GABA induced by 50 mMK(+)-evoked stimulation and agonists of ryanodine receptor (RyR) and inositol-triphosphate receptor (IP3R) in the median prefrontal cortex (mPFC) using in vivo microdialysis. Local perfusion with LEV (10, 30 and 100 μM) alone did not affect the extracellular levels of all neurotransmitters in the mPFC. The release of neurotransmitters induced by K(+)-evoked stimulation was inhibited by perfusion with LEV in a concentration-dependent manner, and those induced by agonists of RyR and IP3R were also inhibited by LEV. Specifically, the RyR-induced release was inhibited by 10 μM LEV, whereas the IP3R-induced release was inhibited by 100 μM LEV, but not by 10 or 30 μM LEV. The above results suggest that LEV has little effect on the components of normal synaptic transmission but selectively inhibits transmission induced by neuronal hyperactivation. Thus, the mechanisms of the antiepileptic and neuroprotective actions of LEV seem to be mediated, at least in part, through the combination of these two inhibitory effects on depolarization-induced and CICR-associated neurotransmitter releases.
    Neuroscience Letters 03/2012; 518(2):69-74. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Corticotropin-releasing factor (CRF) and serotonin are important transmitters of the pathophysiology of mood disorder. To clarify the mechanisms of action of lamotrigine (LTG) and carbamazepine (CBZ), we determined their effects on serotonin release associated with CRF in rat dorsal raphe nucleus (DRN) and median prefrontal cortex (mPFC) using dual-probe microdialysis. Neither perfusion with CRF1 nor CRF2 antagonists into DRN-affected serotonin release in DRN and mPFC. Perfusion of 10 μM CRF into DRN increased serotonin release in both regions, whereas 0.1 μM CRF decreased and had no effect on serotonin release in DRN and mPFC, respectively. Pre-perfusion with CRF1 antagonist into DRN inhibited 0.1 μM CRF-induced serotonin reduction, whereas pre-perfusion with CRF2 antagonist in DRN inhibited 10 μM CRF-induced serotonin elevation, without affecting 0.1 μM CRF-induced serotonin reduction. LTG perfusion concentration dependently decreased serotonin releases in DRN and mPFC. Therapeutic and supratherapeutic concentrations of CBZ increased and decreased serotonin releases in both regions, respectively. Pre-perfusion with sub-therapeutic concentration LTG inhibited CRF1-induced serotonin reduction without affecting CRF2-induced serotonin release, whereas pre-perfusion with therapeutic concentration of LTG inhibited both CRF1- and CRF2-actions. In contrast, both therapeutic and supratherapeutic concentrations of CBZ inhibited CRF2-induced serotonin release without affecting CRF1-induced serotonin reduction. Neither LTG nor CBZ affected the CRF-induced cAMP production in cells over-expressing CRF1 and CRF2 receptors. This study demonstrated that inhibition of CRF2-receptor-mediated serotonergic transmission is a mechanism shared by LTG and CBZ, two clinically related compounds, whereas LTG but not CBZ inhibits CRF1-receptor-mediated serotonergic transmission. Therefore, these mechanisms may contribute to the clinical actions of these agents.
    Psychopharmacology 09/2011; 220(3):599-610. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antipsychotic agent aripiprazole acts as a partial agonist of dopamine D2 and serotonin 5-HT1A receptors. However, the detailed actions of aripiprazole in mesolimbic and mesocortical transmission remain to be clarified. To address this, we examined the effects of systemic and local administrations of aripiprazole on extracellular levels of dopamine and GABA in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and anterior (aVTA) and posterior (pVTA) ventral tegmental areas. Intraperitoneal injection of aripiprazole (0.5mg/kg) increased dopamine release in mPFC without affecting those in aVTA, pVTA, or NAc, whereas 10mg/kg decreased the release in all four regions. Local sulpiride administration in aVTA increased concentration-dependently dopamine release in both aVTA and NAc without affecting that in mPFC, whereas local aripiprazole administration in aVTA concentration-dependently decreased dopamine release in aVTA and mPFC without affecting that in NAc. Blockade of 5-HT1A receptor in aVTA produced aripiprazole-induced dopamine release in aVTA and prevented the aripiprazole-induced reduction of dopamine release in mPFC. Local administration of aripiprazole in mPFC increased dopamine and decreased GABA releases, whereas local administration of sulpiride had no effect on dopamine or GABA. In mPFC, blockade of 5-HT1A receptor prevented the aripiprazole-induced dopamine elevation and GABA reduction; however, under the activation of GABA(A) receptor, local perfusion with aripiprazole in mPFC decreased GABA release without affecting dopamine release. The results suggested that the combination of 5-HT1A and D2 partial agonistic actions of aripiprazole against mesocortical and mesoaccumbens transmission, explains, at least in part, the atypical antipsychotic properties of aripiprazole. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
    Neuropharmacology 09/2011; 62(2):765-74. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deficient transmission at the glutamate NMDA receptor is considered a key component of the pathophysiology of schizophrenia. However, the effects of antipsychotic drugs on the release of the endogenous NMDA receptor partial agonist, D-serine, remain to be clarified. We determined the interaction between antipsychotic drugs (clozapine and haloperidol) and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on the release of L-glutamate and D-serine in the medial prefrontal cortex (mPFC) of freely moving rats, using microdialysis, and primary cultures of astrocytes using extreme high-pressure liquid chromatography. Release of L-glutamate and D-serine in the mPFC and in cultured astrocytes was inhibited by tetanus toxin (a synaptobrevin inhibitor) and fluorocitrate (a glial toxin), whereas tetrodotoxin (a voltage-sensitive Na(+) blocker) inhibited depolarization-induced L-glutamate release in the mPFC without affecting that of D-serine. Clozapine (1 and 5 mg·kg(-1)), but not haloperidol (0.5 and 1 mg·kg(-1)), dose-dependently increased L-glutamate and D-serine release from both astrocytes and mPFC. Clozapine-induced release of L-glutamate and D-serine was also reduced by tetanus toxin and fluorocitrate. Tetrodotoxin reduced clozapine-induced mPFC L-glutamate release but not that of D-serine. Clozapine-induced L-glutamate release preceded clozapine-induced D-serine release. MK-801 (a NMDA receptor antagonist) inhibited the delayed clozapine-induced L-glutamate release without affecting that of D-serine. Clozapine predominantly activated glial exocytosis of D-serine, and this clozapine-induced D-serine release subsequently enhances neuronal L-glutamate release via NMDA receptor activation. The enhanced D-serine associated glial transmission seems a novel mechanism of action of clozapine but not haloperidol.
    British Journal of Pharmacology 08/2011; 165(5):1543-55. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The atypical antidepressant, mirtazapine enhances noradrenergic transmission, but its effects on serotonergic transmission remain to be clarified. The present study determined the effects of acute and chronic administration of mirtazapine on serotonergic transmissions in raphe nuclei and their innervation regions, frontal and entorhinal cortex, using multiple-probes microdialysis with real-time PCR and western blotting. Acute administration of mirtazapine did not affect extracellular serotonin level in raphe nuclei or cortex; however, chronic administration increased extracellular serotonin level in raphe nuclei without affecting that in cortex. Blockade of 5-HT1A receptor, but not that of the 5-HT2A/2C receptor, enhanced the effects of acute administration of mirtazapine on extracellular serotonin level in raphe nuclei. Chronic mirtazapine administration reduced the inhibitory function associated with somatodendritic 5-HT1A receptor in raphe nuclei, but enhanced postsynaptic 5-HT1A receptor in serotonergic innervated cortical regions. Chronic administration reduced the expression of mRNA and protein of serotonin transporter and 5-HT1A receptor in raphe nuclei, but not in the cortices. These results suggested that acute administration of mirtazapine probably activated serotonergic transmission, but its stimulatory action was abolished by activated inhibitory 5-HT1A receptor. Chronic administration of mirtazapine resulted in increased extracellular serotonin level via reduction of serotonin transporter with reduction of somatodendritic 5-HT1A autoreceptor function in raphe nuclei. These pharmacological actions of mirtazapine include its serotonergic profiles as noradrenergic and specific serotonergic antidepressant (NaSSA).
    Neuropharmacology 03/2011; 60(4):550-60. · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To clarify the mechanisms of action of blonanserin, an atypical antipsychotic drug, we studied the effects of systemic administration of blonanserin and risperidone on extracellular levels of norepinephrine, dopamine, serotonin, GABA and glutamate in the medial prefrontal cortex using microdialysis, and neuronal firing in the ventral tegmental area, locus coeruleus, dorsal raphe nucleus and mediodorsal thalamic nucleus using radiotelemetry. The binding affinities of blonanserin to D(2) and 5-HT(2A) receptors in the rat brain were confirmed and found to be similar. Blonanserin transiently increased neuronal firing in locus coeruleus and ventral tegmental area but not in dorsal raphe nucleus or mediodorsal thalamic nucleus, whereas risperidone increased the firing in locus coeruleus, ventral tegmental area and dorsal raphe nucleus but not in mediodorsal thalamic nucleus. Blonanserin persistently increased frontal extracellular levels of norepinephrine and dopamine but not serotonin, GABA or glutamate, whereas risperidone persistently increased those of norepinephrine, dopamine and serotonin but not GABA or glutamate. These results suggest a pharmacological correlation between the stimulatory effects of these antipsychotics on frontal monoamine release and neuronal activity in monoaminergic nuclei. Inhibition of the α(2) adrenoceptor increased extracellular monoamine levels and enhanced blonanserin-induced increase in extracellular serotonin level. These results indicated that the combination of antagonism of D(2) and 5-HT(2A) receptors contribute to the rise in extracellular levels of norepinephrine and dopamine, and that α(2) adrenoceptors play important roles in frontal serotonin release. They also suggest that blonanserin-induced activation of monoaminergic transmission could be, at least partially, involved in atypical antipsychotic properties of blonanserin.
    European journal of pharmacology 02/2011; 653(1-3):47-57. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To clarify the antiepileptic mechanisms of valproate (VPA), we determined the effects of acute and sub-acute administrations of VPA on ryanodine receptor (RyR)-associated hippocampal releases of GABA and glutamate using microdialysis, as well expression of mRNA and protein of RyR subtypes in the rat hippocampus. Acute administration of therapeutic-relevant VPA did not affect the hippocampal extracellular levels of GABA or glutamate, whereas sub-acute administration increased GABA level without affecting that of glutamate. Perfusion with ryanodine increased the hippocampal extracellular level of glutamate (ryanodine concentration range: 1-1000μM) concentration-dependently; however, that of GABA was increased by 1-100μM ryanodine concentration-dependently but the stimulatory effects of 1000μM ryanodine on GABA release was not observed. Both acute and sub-acute administrations of therapeutic-relevant VPA inhibited ryanodine-induced responses of hippocampal extracellular glutamate level without affecting that of GABA. Especially, both acute and sub-acute administrations of VPA prevented the breakdown of GABA release induced by 1000μM ryanodine. Sub-acute administration of therapeutically-relevant dose VPA weakly increased RyR mRNA expression but we could not detect the changes of RyR protein expression in rat hippocampus. These results suggest that VPA inhibited the neurotransmitter release associated with RyR without affecting the expression of RyR protein. Therefore, the antiepileptic action of VPA seems to be mediated, at least in part, by an increase in basal GABA release and inhibition of RyR-associated glutamate release.
    Neuroscience Research 12/2010; 68(4):322-8. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The atypical antipsychotic drug, quetiapine (QTP), is effective in schizophrenia and mood disorders, but induces seizures compared to typical antipsychotics. To explore the mechanisms of action of QTP, we determined its effects on extracellular levels of norepinephrine, dopamine, serotonin, gamma-aminobutyric acid (GABA), and glutamate in the medial prefrontal cortex (mPFC) using microdialysis, and neuronal firing in the ventral tegmental area (VTA), locus coeruleus (LC), dorsal raphe nucleus (DRN), and mediodorsal thalamic nucleus (MTN) by telemetry in freely moving rats. QTP (10 and 30 mg/kg, i.p.) activated neuronal firing in the VTA, LC, and MTN without affecting that in the DRN. QTP increased extracellular levels of norepinephrine, dopamine, and glutamate without affecting serotonin or GABA levels in the mPFC. The stimulatory effects of QTP on norepinephrine and dopamine were mediated by positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamatergic and negative GABA-mediated NMDA/glutamatergic regulation. The dopaminergic terminal projecting from the VTA received inhibitory GABA-mediated NMDA/glutamatergic regulation, but not stimulatory AMPA/glutamatergic regulation. However, both dopaminergic and noradrenergic terminals from the LC received stimulatory AMPA/glutamatergic regulation from the MTN, but not inhibitory GABA-mediated NMDA/glutamatergic regulation. These findings correlating neuronal activities in nuclei with neurotransmitter release suggested that the effects of QTP on neurotransmission in the mPFC depend on activated neuronal projections located outside the mPFC. Furthermore, positive interaction between LC and MTN afferents are potentially important in the pharmacological mechanisms of neurotransmitter regulation by QTP and hint at mechanisms underlying the atypical profile of this drug for treatment of schizophrenia and as a mood stabilizer and proconvulsive agent.
    Psychopharmacology 08/2009; 206(2):243-58. · 4.06 Impact Factor
  • S Yamamura, K Ohoyama, H Nagase, M Okada
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent randomized control study demonstrated that zonisamide (ZNS), an antiepileptic drug, is effective in Parkinson's disease at the lower than the therapeutic doses against epilepsy (25-50 mg/day); however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. To determine the mechanism of antiparkinsonian effect of ZNS, we investigated the effects of ZNS on extracellular levels of dopamine in the striatum (STR), glutamate in substantia nigra pars reticulata (SNr), GABA in globus pallidus (GP), subthalamic nucleus (STN) and SNr, using multiple microdialysis probes. Striatal perfusion of 1000 microM ZNS (within therapeutic-relevant concentration against epilepsy) increased extracellular levels of dopamine in STR, whereas 100 microM ZNS (lower than the therapeutic-relevant concentration against epilepsy but within the therapeutic rage against Parkinson's disease) did not affect it. Striatal perfusion of ZNS (100 and 1000 microM) decreased the extracellular levels of GABA in STN and glutamate in SNr, but decreased extracellular GABA level in GP without affecting GABA level in SNr. These concentration-dependent effects of ZNS on extracellular neurotransmitter levels were independent of dopamine and delta(2) receptors; however, blockade of delta(1) receptor inhibited the effects of ZNS. Furthermore, activation of delta(1) receptor enhanced the effects of ZNS on neurotransmitter level. These results suggest that ZNS does not affect the direct pathway but inhibits the indirect pathway, which is mediated by delta(1) receptor. Therefore, the antiparkinsonian effects of ZNS seem to be mediated through the interaction between lower than therapeutically-relevant concentration against epilepsy of ZNS (100 microM) and delta(1) receptor.
    Neuropharmacology 06/2009; 57(3):322-31. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The atypical antipsychotic drug, zotepine, is effective in treatment of schizophrenia and acute mania, but the incidence of seizures during treatment is higher than with other antipsychotics. In addition, the mechanisms underlying the clinical actions of zotepine remain uncharacterized. The effects of intraperitoneal administration of zotepine and haloperidol on the extracellular levels of noradrenaline, dopamine, 5-HT, GABA, and glutamate in the medial prefrontal cortex (mPFC) were compared. Neuronal activities induced by each drug in the ventral tegmental area (VTA), locus coeruleus (LC), dorsal raphe nucleus (DRN) and mediodorsal thalamic nucleus (MTN) were also analysed. Haloperidol did not affect extracellular neurotransmitter levels in the mPFC. In contrast, zotepine activated neuronal activities in all nuclei and increased the extracellular levels of noradrenaline, dopamine, GABA, and glutamate in the mPFC, but not 5-HT levels. The zotepine-stimulated neuronal activity in the VTA, LC, DRN and MTN enhanced the release of dopamine, noradrenaline, 5-HT, glutamate and GABA in the mPFC, although the enhanced GABAergic transmission possibly inhibited noradrenaline, dopamine and 5-HT release. The other afferent to mPFC, which releases dopamine and noradrenaline, was partially insensitive to GABAergic inhibition, but possibly received stimulatory AMPA/glutamatergic regulation from the MTN. Our results indicated that the positive interaction between prefrontal catecholaminergic transmission and AMPA/glutamatergic transmission from MTN might explain the regulatory effects of zotepine on neurotransmitter release. A mechanism is suggested to account for the pharmacological profile of this atypical antipsychotic and for its pro-convulsive action.
    British Journal of Pharmacology 05/2009; 157(4):656-65. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To clarify the antiepileptic mechanisms of zonisamide (ZNS), we determined the interaction between ZNS and inositol-1,4,5-triphosphate receptor (IP3R) on exocytosis of GABA and glutamate in rat frontal cortex using microdialysis. ZNS increased basal GABA release, but not glutamate, concentration-dependently, and reduced concentration-dependently K(+)-evoked GABA and glutamate releases. Inhibition and activation of IP3R reduced and enhanced basal and K(+)-evoked GABA releases, respectively. The K(+)-evoked glutamate release was reduced and enhanced by IP3R antagonist and agonist, respectively, whereas basal glutamate release was increased by IP3R agonist but not affected by IP3R antagonist. Under extracellular Ca(2+) depletion, IP3R agonist increased basal GABA and glutamate releases. The latter effects of IP3R agonist were weakly enhanced by ZNS, but such stimulatory action of ZNS was abolished by extracellular Ca(2+) depletion. In contrast, ZNS inhibited the stimulatory effect of IP3R agonist on K(+)-evoked release. The stimulatory effect of IP3R agonist on basal release was regulated by N-type voltage-sensitive Ca(2+) channel (VSCC) rather than P- and L-type VSCCs, whereas the stimulatory effect of IP3R agonist on K(+)-evoked release was regulated by P- and L-type VSCCs rather than N-type VSCC. These results suggest that ZNS-activated N-type VSCC enhances IP3R-associated neurotransmitter release during resting stage, whereas ZNS-induced suppression of P- and L-type VSCCs possibly attenuates IP3R-associated neurotransmitter release during neuronal hyperexcitability. Therefore, the combination of both of these two actions of ZNS on IP3R-associated neurotransmitter release mechanism seems to be involved, at least in part, in the mechanisms of antiepileptic and neuroprotective actions of ZNS.
    Neuroscience Letters 05/2009; 454(1):91-6. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms of paradoxical aggravation of epileptic seizures induced by selected antiepileptic drugs (AEDs) remain unclear. The present study addressed this issue by determining the seizure-threshold doses of carbamazepine (CBZ) and phenytoin (PHT), as well the dose-dependent effects of CBZ, PHT, and carbonic anhydrase-inhibiting AEDs, acetazolamide (AZM), topiramate (TPM), and zonisamide (ZNS), on neurotransmitter release in rat hippocampus. The dose-dependent effects of AEDs on hippocampal extracellular levels of glutamate (Glu), GABA, norepinephrine (NE), dopamine (DA), and serotonin (5-HT) were determined by microdialysis with high-speed and high-sensitive extreme liquid chromatography. Proconvulsive effects of AEDs were determined by telemetric-electrocorticography. Therapeutically relevant doses of AZM, CBZ, TPM, and ZNS increased hippocampal extracellular levels of GABA, NE, DA, and 5-HT, while PHT had no effect. Supratherapeutic doses of AZM, CBZ, PHT, TPM, and ZNS decreased extracellular levels of GABA, NE, DA, and 5-HT, without affecting Glu levels. Toxic doses of CBZ and PHT produced seizures (paradoxical intoxication), markedly increasing all transmitter levels, but TPM and ZNS even at toxic doses did not produce seizure. Co-administration experiments showed that therapeutically relevant doses of CBZ or PHT reduced the seizure-threshold doses of PHT or CBZ, respectively. In contrast, therapeutically relevant doses of AZM, TPM, and ZNS elevated the seizure-threshold doses of CBZ and PHT. These results suggested that blockade of high percentage of the population of voltage-dependent sodium channels by CBZ and PHT might be important in inducing paradoxical intoxication/reaction, and that inhibition of carbonic anhydrase inhibits this effect. TPM and ZNS are candidate first-choice agents in treatment of epilepsy when first-line AEDs are ineffective.
    Epilepsy research 04/2009; 84(2-3):172-86. · 2.48 Impact Factor