Yeou-Ping Tsao

Mackay Memorial Hospital, T’ai-pei, Taipei, Taiwan

Are you Yeou-Ping Tsao?

Claim your profile

Publications (51)176.28 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pigment epithelium-derived factor (PEDF) has been shown previously to prevent liver fibrosis and hepatic stellate cell (HSC) activation. By investigating the functional domains in PEDF, we identified a 34-mer peptide (residues Asp44-Asn77) that harbors the same function as the full-length PEDF protein. Not only did the 34-mer suppress the development of fibrosis in carbon tetrachloride (CCl4)-treated mouse liver but it also upregulated peroxisome proliferator-activated receptor-gamma (PPARγ) expression in HSCs in vivo. Platelet-derived growth factor (PDGF) plays a crucial role on the process of HSC activation in response to liver damage. The 34-mer suppressed PDGF-induced cell proliferation and expression of myofibroblastic marker proteins in primary rat HSC culture, increased the levels of PPARγ mRNA and protein in a dose-dependent manner and markedly reduced the level of active β-catenin protein, an HSC activating factor, in HSC-T6 cells. Similarly, IWR-1, an inhibitor of the Wnt response, displayed the same effect as the 34-mer in preventing HSC-T6 activation. The Wnt signaling-mediated PPARγ suppression was abolished by both the IWR-1 inhibitor and a small interfering RNA (siRNA) targeting β-catenin and the Wnt coreceptor, LRP6. Both PEDF and the 34-mer down-regulated PDGF receptor-α/β expression and blocked the PDGF-induced phosphorylation of Akt and ERK. Moreover, the inhibitory effect on PDGF receptor expression was abolished by PPARγ antagonists and PPARγ siRNA. Our observations indicate that the PEDF-derived 34-mer peptide can mimic PEDF in attenuating HSC activation. Investigation of this 34-mer peptide led to the identification of a signaling mechanism involving PPARγ induction, suppression of Wnt/β-catenin signaling and down-regulation of the PDGF receptor-α/β.
    PLoS ONE 01/2014; 9(4):e95443. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Continuous culture of limbal epithelial stem cells (LSCs) slows down proliferation, which inevitably results in differentiation. Transforming growth factor-beta (TGFβ)-assisted epithelial-mesenchymal transition (EMT) is often found in the late stage of LSC culture. Thus, EMT is proposed to be part of the mechanism responsible for the loss of LSCs in culture. To explore the regulation mechanism of EMT, we investigated the early stage culture for factor(s) that may potentially prevent EMT. LSCs from the corneal limbus region of rabbits were isolated and expanded to confluence in culture (P0), and then serial passage of these LSCs (P1 to P3) was performed. EMT in LSCs was induced with TGFβ1, and the corresponding EMT signaling was confirmed with Smad2/3 phosphorylation. The expression of mesenchymal markers, including alpha-smooth muscle actin (α-SMA) and vimentin, was determined with western blot analysis. Proteins extracted from different passaged cells were also subjected to western blot analysis of TGFβ signaling components, including TGFβ1, TGFβ receptor I/II, and Smad2/3 as well as Smad7, the main negative regulator of TGFβ signaling. The mitogenic response was measured with the bromodeoxyuridine (BrdU) labeling index and real-time PCR using primers for Ki67. N-(N-[3,5-difluorophenacetyl]-l-alanyl)-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase inhibitor, and Jagged-1 Notch ligand were used to block and activate Notch signaling, respectively, and their efficacy was evaluated by determining the expression of Hes1, a Notch signaling target. Mesenchymal marker induction and growth arrest were found in the TGFβ1-treated P1 cells, and the changes were less significant in the TGFβ1-treated P0 cells. Western blot analysis confirmed that the expressed levels of TGFβ signaling components, including TGFβ1, TGFβ receptor I/II, and Smad2/3, were relatively stable with passages. In contrast, the expression of Hes1 and Smad7 markedly decreased after the first passage, and with each passage, the levels diminished even further. Hes1 and Smad7 were expressed only in the limbal epithelium and not in the corneal epithelium. DAPT effectively blocked the expression of Hes1. DAPT also dose-dependently suppressed Smad7 expression in P0 cells, which was associated with the susceptibility of P0 cells to TGFβ1-induced Smad2/3 phosphorylation, EMT formation, and growth arrest. Reciprocally, Jagged-1 upregulated Smad7 expression in LSCs against TGFβ signaling. These findings indicate that Smad7 plays a crucial role in antagonizing EMT induced by TGFβ signaling and support our proposition that Smad7 is a Notch signaling target in LSCs, and may mediate the Notch function in preventing the occurrence of EMT.
    Molecular vision 01/2014; 20:522-534. · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Limbal epithelial stem cell (LSC) transplantation is a prevalent therapeutic method for patients with LSC deficiency. The maintenance of stem cell characteristics in the process of culture expansion is critical for the success of ocular surface reconstruction. Pigment epithelial-derived factor (PEDF) increased the numbers of holoclone in LSC monolayer culture and preserved the stemness of LSC in suspension culture by evidence of ΔNp63α, Bmi-1 and ABCG2 expression. BrdU pulse-labeling assay also demonstrated that PEDF stimulated LSCs proliferation. In air-lift culture of limbal equivalent, PEDF was capable of increasing the numbers of ΔNp63α-positive cells. The mitogenic effect of PEDF was found to be mediated by the phosphorylations of p38 MAPK and STAT3 in LSCs. Synthetic 44-mer PEDF (residues 78-121) was as effective as the full length PEDF in LSC expansion in suspension culture and limbal equivalent formation, as well as the activation of p38 MAPK and STAT3. In mice subjecting to mechanical removal of cornea epithelium, 44-mer PEDF facilitated corneal wound healing. Microscopically, 44-mer PEDF advanced the early proliferative response in limbus, increased the proliferation of ΔNp63α-positive cells both in limbus and in epithelial healing front, and assisted the repopulation of limbus in the late phase of wound healing. In conclusion, the capability of expanding LSC in cell culture and in animal indicates the potential of PEDF and its fragment (e.g., 44-mer PEDF) in ameliorating limbal stem cell deficiency; and their uses as therapeutics for treating corneal wound.
    Stem Cells 04/2013; · 7.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability.
    RNA 12/2012; · 5.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Damaged DNA-binding protein 2 (DDB2), a protein that binds damaged DNA, is a DDB1 and CUL4-associated factor. This study is the first to demonstrate that DDB2 is a novel androgen receptor (AR)-interacting protein; and mediating contact with AR and CUL4A-DDB1 complex for AR ubiquitination/degradation. DNA damage induces both p53 and DDB2 gene expression those two can inhibit AR expression. The former reduces AR via transcription regulation but the latter via proteosome degradation. Thereby DDB2 can inhibit cell growth rate in AR-expressing cells (LNCaP) but not in AR-null cells (PC3). Hence DDB2 may be a potential regimen for prostate cancer treatment, especially in androgen-refractory patients harboring high amount of AR who cannot be cured by androgen ablation.
    The international journal of biochemistry & cell biology 07/2012; 44(11):1952-61. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, in a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.
    Virology 12/2011; 423(1):38-48. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of pyrrolidine dithiocarbamate (PDTC), a nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) inhibitor, on the expression of matrix metalloproteinases (MMP) and MMP-mediated apoptosis in retinal ganglion cells (RGCs) following the transection of the optic nerve (ON) in rats. The ON of adult male Sprague-Dawley rats was transected. The expression of MMP-2, MMP-9, and NF-κB was measured by Western blot analysis and immunohistochemical analysis following transection. In situ zymography was also performed to localize gelatinolytic activity in the retinas. PDTC was injected intravitreally immediately following transection of the ON to evaluate the effect on the expression of NF-κB and MMP as well as its anti-apoptotic effect and neuroprotective effect on RGCs. Significant up-regulation of MMP-9, and NF-κB was observed 7 days post-transection; however, this was not observed for MMP-2. PDTC at concentrations of 0.5 mM suppressed the up-regulation of MMP-9 and NF-κB, inhibiting gelatinolytic activity in the RGC layer. Meanwhile, far fewer apoptotic RGCs were detected and more surviving RGCs were preserved in PDTC-treated retinas 7 days post-transection compared to retinas in the control group. However, this kind of neuroprotective effect was not significant at 14 days post-transection. This study demonstrated that PDTC, mediated in part through the down-regulation of MMP-9, could contribute to delaying the death of RGCs following transection of the ON.
    Current eye research 11/2011; 36(11):1053-63. · 1.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.
    Journal of Biological Chemistry 08/2011; 286(41):35943-54. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression.
    Journal of Virology 07/2011; 85(13):6750-63. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver is the major site of pigment epithelium-derived factor (PEDF) synthesis. Recent evidence suggests a protective role of PEDF in liver cirrhosis. In the present study, immunohistochemical analyses revealed lower PEDF levels in liver tissues of patients with cirrhosis and in animals with chemically induced liver fibrosis. Delivery of the PEDF gene into liver cells produced local PEDF synthesis and ameliorated liver fibrosis in animals treated with either carbon tetrachloride or thioacetamide. In addition, suppression of peroxisome proliferator-activated receptor gamma expression, as well as nuclear translocation of nuclear factor-kappa B was found in hepatic stellate cells (HSCs) from fibrotic livers, and both changes were reversed by PEDF gene delivery. In culture-activated HSCs, PEDF, through the induction of peroxisome proliferator-activated receptor gamma, reduced the activity of nuclear factor-kappa B and prevented the nuclear localization of JunD. In conclusion, our observations that PEDF levels are reduced during liver cirrhosis and that PEDF gene delivery ameliorates cirrhosis suggest that PEDF is an intrinsic protector against liver cirrhosis. Direct inactivation of HSCs and the induction of apoptosis of activated HSCs may be two of the mechanisms by which PEDF suppresses liver cirrhosis.
    American Journal Of Pathology 10/2010; 177(4):1798-811. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In search for the anti-inflammation mechanism of PEDF, we investigate whether pigment epithelium-derived factor (PEDF) induces the gene expression of interleukin (IL)-10 in human macrophages and determine the molecular basis of this induction. Human macrophages derived from a monocytic cell line, THP-1, and peripheral monocytes were treated with PEDF. IL-10 expression was assessed by quantitative real-time PCR, enzyme-linked immunosorbent assay, semi-quantitative reverse transcriptase (RT)-PCR, and promoter-reporter assay. Activity of extracellular signal-regulated kinase 2 (ERK2) and p38 mitogen-activated protein kinase (MAPK) was assessed by immunoblotting using antibodies targeting phosphorylated kinases forms. Elk-1 and ATF-2 phosphorylation was determined as well. Pharmacological inhibitors were used to examine the involvement of ERK, p38 MAPK, and peroxisome proliferator-activated receptor gamma (PPARgamma) on the IL-10 expression induced by PEDF. PEDF increased the levels of IL-10 mRNA and protein in THP-1 cells and human macrophages derived from peripheral monocytes. Blockade of activity of ERK or p38 MAPK attenuated PEDF effects on induction of PPARgamma and IL-10. PEDF increased the transcriptional activity of IL-10 promoter. The effect was synergistically augmented by PPARgamma agonist, but attenuated by inhibitors of PPARgamma, ERK or p38 MAPK. These results showed that PEDF promotes IL-10 expression at transcriptional level, and that this is achieved through the ERK2/p38MAPK-dependent PPARgamma expression. The anti-inflammatory property of PEDF may in part through the induction of IL-10 in macrophages. Our study supports the therapeutic potential of PEDF and PPARgamma agonists in inflammatory diseases.
    Life sciences 07/2010; 87(1-2):26-35. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in tissue-engineering techniques have enabled new procedures to be developed for bone regeneration. In this study, for engineering of structural tissues with supporting vascular networks, the authors attempted to produce vascularized tissue-engineered bone grafts using cultured mesenchymal stem cells/hydroxyapatite/collagen gel bead composites and vascular bundle implantation. Twenty-four New Zealand White rabbits underwent implantation of ringed polytetrafluoroethylene vascular grafts (1 x 3 cm) in the medial thigh with the femoral vascular bundle passing through. The polytetrafluoroethylene grafts were left unfilled (group A), filled with hydroxyapatite/collagen gel beads (group B), or filled with mesenchymal stem cells/hydroxyapatite/collagen gel bead composites (group C). At 4, 8, 12, and 16 weeks, the implants were removed and radiographic and histologic examinations were conducted. Radiographic analysis revealed that the area of radiopacity within the chamber was highest in group C. The average calcified densities of groups B and C were between 0.99 +/- 0.11 and 1.29 +/- 0.14. Histologically, there was fibroadipose tissue within the chamber in group A. New tissue had grown into the matrix of the chambers of groups B and C, and substitution of the biomaterials was seen. Newly formed fibrovascular networks and osteoids were simultaneously seen. Bone marrow was observed in the vascular graft of group C 6 months after implantation. Tissue-engineered vascularized bone grafts of predetermined shape were created with mesenchymal stem cell/hydroxyapatite/collagen gel bead composites. The results of this study showed that successful in vivo engineering of vascularized tissue-engineered bone grafts is possible.
    Plastic and reconstructive surgery 05/2010; 125(5):1393-402. · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the protective effects of cobalt protoporphyrin (CoPP), a potent heme oxygenase (HO)-1 inducer, in a rat model of ischemia-reperfusion injury and to document the possible antiapoptotic and anti-inflammatory mechanisms underlying the protection. Rats pretreated with intraperitoneal injection of CoPP (5 mg/kg) were subjected to retinal ischemia by increases in intraocular pressure to 130 mm Hg for 60 minutes. The protective effects of CoPP were evaluated by determining the morphology of the retina, counting the survival of retinal ganglion cells (RGCs), and measuring apoptosis in retinal layers. In addition, expressions of HO-1, caspase-3, p53, Bcl-xL, monocyte chemoattractant protein (MCP)-1, and inducible nitric oxide synthase (iNOS) were documented by Western blot analysis. Detection of HO-1, NF-kappaB, and CD68 protein in the retina was performed by immunohistochemistry or immunofluorescence. Pharmacologic induction of HO-1 by CoPP led to HO-1 expression in the full retinal layer. HO-1 overexpression alleviated apoptosis in the retina, preserved RGCs, and attenuated the reduction of inner retinal thickness after ischemia-reperfusion injury. Concurrently, overexpression of HO-1 was associated with inhibition of caspase-3, p53, NF-kappaB, and iNOS and with increased expression of Bcl-xL. Meanwhile, the anti-inflammatory effect of HO-1 was related to reduction in the recruitment of macrophage infiltration in the retina through the suppression of MCP-1. These beneficial effects of HO-1 induced by CoPP were diminished by the HO-1 inhibitor ZnPP. Overexpression of HO-1 by pharmacologic induction protected the retina from subsequent cellular damage caused by ischemia-reperfusion injury through antiapoptotic and anti-inflammatory effects.
    Investigative ophthalmology & visual science 03/2010; 51(9):4798-808. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer amplified sequence 2 (BCAS2) was reported previously as a transcriptional coactivator of estrogen receptor. Here, we report that BCAS2 directly interacts with p53 to reduce p53 transcriptional activity by mildly but consistently decreasing p53 protein in the absence of DNA damage. However, in the presence of DNA damage, BCAS2 prominently reduces p53 protein and provides protection against chemotherapeutic agent such as doxorubicin. Deprivation of BCAS2 induces apoptosis in p53 wild-type cells but causes G(2)-M arrest in p53-null or p53 mutant cells. There are at least two apoptosis mechanisms induced by silencing BCAS2 in wild-type p53-containing cells. Firstly, it increases p53 retention in nucleus that triggers the expression of apoptosis-related genes. Secondly, it increases p53 transcriptional activity by raising p53 phosphorylation at Ser(46) and decreases p53 protein degradation by reducing p53 phosphorylation at Ser(315). We show for the first time that BCAS2, a small nuclear protein (26 kDa), is a novel negative regulator of p53 and hence a potential molecular target for cancer therapy.
    Cancer Research 11/2009; 69(23):8877-85. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated a gene vaccine strategy against human papillomavirus (HPV)-induced cancer and premalignant diseases, using adeno-associated virus (AAV) vector encoding the viral E7 oncoproteins as the tumor antigens from HPV serotypes 16 (HPV16) and 18 (HPV18). Genetically inactivated E7 proteins were fused with a heat shock protein 70 (hsp70) to minimize the risk of cell transformation and enhance immune responses. The fusion protein gene was packaged in AAV serotype 1 or 2 (AAV1 or 2) for efficient in vivo gene expression. Our results showed that after a single intramuscular injection, the AAV1 vector elicited stronger HPV-specific cytotoxic T lymphocyte (CTL) responses and interferon-gamma secretion when compared with the AAV2 vector. Prophylactic immunization with AAV1 protected 100% of the mice from tumor growth for more than 1 year, whereas all the control mice immunized with either a LacZ vector or saline grew large tumors and died within 6 weeks after inoculation of E7-positive tumor cell line TC-1. In addition, this single-dose AAV1 vaccination completely protected the mice against second and third challenges with higher numbers of TC-1 cells. Despite lower CTL responses against the E7 antigens, AAV2 vector prophylactic immunization was also sufficient to protect 100% of the mice against the initial and second tumor challenges and 70% of the mice against the third challenge. In addition, therapeutic immunization with AAV1 after palpable tumor formation inhibited tumor growth and caused tumor regression in some mice. Thus, our studies support the potential of AAV vectors as a genetic vaccine for the prevention and treatment of HPV-induced malignancies.
    Human gene therapy 09/2009; 21(1):109-19. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the potential of gene therapy with a recombinant adeno-associated virus vector encoding the interleukin-1 receptor antagonist gene (rAAV-IL-1Ra) in the treatment of experimental uveitis. The vitreal cavity of New Zealand white rabbits was injected with rAAV-IL-1Ra (4x10(7) infectious units), and the contralateral eye was injected with the same amount of rAAV-LacZ or PBS as a control. Transgene expression was evaluated by immunohistochemistry, ELISA, and RT-PCR. To evaluate the therapeutic potential of rAAV-IL-1Ra, experimental uveitis was induced by intravitreal injection of IL-1alpha at 10 and 100 days after rAAV-IL-1Ra administration. The effects of rAAV-IL-1Ra on experimental uveitis were investigated using histological and aqueous analysis. Following intravitreal injection of rAAV-IL-1Ra, transgene expression was found in various cell types of the ocular tissues, such as ciliary epithelial cells, retinal ganglion cells, and retinal pigment epithelial cells. RT-PCR and ELISA showed that the IL-1Ra transgene persisted in the rabbit eye for at least 100 days. Compared with the control eyes, the transgene expression ameliorated experimental uveitis at 10 and 100 days after a single administration of rAAV-IL-1Ra. Intravitreal administration of rAAV-IL-1Ra led to sustained human IL-1Ra transgene expression in rabbit eyes for 100 days. The transgene expression suppressed uveitis episodes at 10 and 100 days after rAAV-IL-1Ra injection. Long-term suppression of experimental uveitis could be achieved by gene therapy with rAAV-IL-1Ra.
    Molecular vision 02/2009; 15:1542-52. · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pigment epithelium-derived factor (PEDF) is an intrinsic antiangiogenic factor and a potential therapeutic agent. Previously, we discovered the mechanism of PEDF-induced apoptosis of human umbilical vein endothelial cells (HUVECs) as sequential induction/activation of p38 mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor gamma (PPAR-gamma), and p53. In the present study, we investigated the signaling role of cytosolic calcium-dependent phospholipase A(2)-alpha (cPLA(2)-alpha) to bridge p38 MAPK and PPAR-gamma activation. PEDF induced cPLA(2)-alpha activation in HUVECs and in endothelial cells in chemical burn-induced vessels on mouse cornea. The cPLA(2)-alpha activation is evident from the phosphorylation and nuclear translocation of cPLA(2)-alpha as well as arachidonic acid release and the cleavage of PED6, a synthetic PLA(2) substrate. Such activation can be abolished by p38 MAPK inhibitor. The PEDF-induced PPAR-gamma activation, p53 expression, caspase-3 activity, and apoptosis can be abolished by both cPLA(2) inhibitor and small interfering RNA targeting cPLA(2)-alpha. Our observation not only establishes the signaling role of cPLA(2)-alpha but also for the first time demonstrates the sequential activation of p38 MAPK, cPLA(2)-alpha, PPAR-gamma, and p53 as the mechanism of PEDF-induced endothelial cell apoptosis.
    AJP Cell Physiology 01/2009; 296(2):C273-84. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reconstruction of large segment of bony defects is frequently needed in hand surgery. Autogenous bone grafting is considered the standard in management of these bony defects but has limited source of graft material. Collagen and hydroxyapatite have been used as bone-filling materials and are known to serve as the osteoconductive scaffold for bone regeneration. On the other hand, platelet-rich plasma is a kind of natural source of growth factors, and has been used successfully in bone regeneration and improving wound healing. This study was designed to evaluate the effectiveness of using biohybrids of platelet-rich plasma and collagen-hydroxyapatite beads for fabricating of protrusive bone in a rabbit animal model. Biomaterial beads comprised of particulate hydroxyapatite dispersed in fibrous collagen (type I) matrices were prepared and filled in the ringed polytetrafluoroethylene (PTFE) artificial vascular graft (3 cm long, 1 cm in diameter). New Zealand White rabbits were each implanted with two cylindrical PTFE artificial vascular graft over both iliac crests (n = 16). A 2 x 0.5 cm opening was created at the side of each PTFE chamber to allow the content of chamber in contact with the bone marrow of the ileum. The chambers were empty (groups A and D), filled with type I collagen/hydroxyapatite beads (groups B and C). In groups C and D, autologous platelet rich plasma (PRP) was given by transcutaneous injection method into the chambers every week. After 12 weeks, the animals were sacrificed and the chambers were harvested for radiological and histological analysis. In plain radiographs, the group C chambers had significantly higher bone tissue engineered (average calcified density 0.95, average calcified area 61.83%) compared with other groups (P < 0.001). In histological examination, there was a creeping substitution of the implant by the in-growth of fibrovascular tissue in group C. Abundant fibrovascular networks positioned interstitially between these biomaterial beads in all parts of chamber. Degradation of these beads and newly formed capillaries and osteoids around the degraded matrixes are shown. The continually calcification in the matrixes or degraded matrixes is evidenced by the strong green fluorescence observed under the confocal microscope. In group B, looser architecture without evidence of tissue in-growth was shown. In the scaffold absent groups (A and D), there was only fibrous tissue shown within the chamber. In this study, we have demonstrated a feasible approach to fabricate an osseous tissue that meets clinical need. Using the type I collagen/ hydroxyapatite gel beads matrixes and intermittent injection of autologous platelet-rich-plasma, specific 3D osseous tissues with fibrovascular network structure from pre-exist bony margin were successfully created in an in vivo animal model.
    Journal of Materials Science Materials in Medicine 01/2009; 20(1):23-31. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to evaluate the efficacy of subretinal injection of recombinant adeno-associated virus vector expressing heme oxygenase-1 (rAAV-HO-1) in attenuating photoreceptor apoptosis induced by experimental retinal detachment (RD) in Sprague-Dawley rats. Our results disclosed that subretinal rAAV-HO-1 delivery achieved localized high HO-1 gene expression in retinal outer nuclear layer (ONL) compared with rAAV-lacZ-injected eyes and eyes with RD left untreated both at 2 (p=0.003) and 28 (p=0.007) days of RD. The ONL thickness (p=0.018) and mean photoreceptor nuclei count (p=0.009) in eyes receiving rAAV-HO-1 injection was significantly higher than in rAAV-lacZ-injected or eyes with RD left untreated at 28 days of RD. There were fewer apoptotic photoreceptor nuclei at 2 (p=0.008) and 5 (p=0.018) days of RD and less activated caspase-3 expression (p=0.008) at 2 days of RD in rAAV-HO-1 treated eyes than in control eyes. These data supported that gene transfer approach might attenuate photoreceptor apoptosis caused by RD with a resultant better ONL preservation.
    Vision research 10/2008; 48(22):2394-402. · 2.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a potent anti-angiogenic factor and induces endothelial cell apoptosis, although the mechanism remains unclear. In this study, 15d-PGJ(2) was found to increase p53 levels of the human umbilical vein endothelial cells by stabilizing p53. Both 15d-PGJ(2)-induced apoptosis and the induction of p21(Waf1) and Bax can be abolished by p53 small interfering RNA but not by peroxisome proliferator-activated receptor gamma inhibitors. Moreover, 15d-PGJ(2) activated JNK and p38 MAPK while inducing p53 phosphorylation at sites responsible for p53 activity. JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) pretreatment attenuated 15d-PGJ(2)-mediated apoptosis and suppressed the p21(Waf1) and Bax expressions without affecting p53 protein accumulation. Pretreatment with SP600125 partially prevented the phosphorylation of p53 at serines 33 and 392 induced by 15d-PGJ(2). 15d-PGJ(2) was also found to induce reactive oxygen species generation and partially blocked nuclear factor-kappaB activity. Pretreatment with antioxidant N-acetylcysteine prevented the p53 accumulation, the phosphorylations of JNK and p38 MAPK, the inhibition of NF-kappaB activity, as well as the apoptosis induced by 15d-PGJ(2). Using a mouse model of corneal neovascularization, it was demonstrated in vivo that 15d-PGJ(2) induced reactive oxygen species generation, activated JNK and p38 MAPK, induced p53 accumulation/phosphorylation, and induced vascular endothelial cell apoptosis, which could be abolished by N-acetylcysteine, SP600125, SB203580, or a virus-derived amphipathic peptides-based p53 small interfering RNA. This is the first study that 15d-PGJ(2) induces vascular endothelial cell apoptosis through the signaling of JNK and p38 MAPK-mediated p53 activation both in vitro and in vivo, further establishing the potential of 15d-PGJ(2) as an anti-angiogenesis agent.
    Journal of Biological Chemistry 09/2008; 283(44):30273-88. · 4.65 Impact Factor

Publication Stats

596 Citations
176.28 Total Impact Points

Institutions

  • 2005–2013
    • Mackay Memorial Hospital
      T’ai-pei, Taipei, Taiwan
  • 2007–2012
    • National Taiwan University
      • Graduate Institute of Microbiology
      Taipei, Taipei, Taiwan
    • Mackay Medicine, Nursing and Management College
      T’ai-pei, Taipei, Taiwan
  • 2010
    • Chang Gung University
      • Graduate Institute of Clinical Medicine Sciences
      Taoyuan, Taiwan, Taiwan
    • Centers for Disease Control - Taiwan
      T’ai-pei, Taipei, Taiwan
  • 2002–2009
    • Tri-Service General Hospital
      T’ai-pei, Taipei, Taiwan
  • 2007–2008
    • National Yang Ming University
      • Institute of Clinical Medicine
      Taipei, Taipei, Taiwan
  • 2002–2008
    • Chang Gung Memorial Hospital
      • Department of Ophthalmology
      Taipei, Taipei, Taiwan
  • 2002–2005
    • National Defense Medical Center
      • • Graduate Institute of Life Sciences
      • • Department of Microbiology and Immunology
      Taipei, Taipei, Taiwan