Kanji Yoshimoto

Hiroshima Institute of Technology, Hirosima, Hiroshima, Japan

Are you Kanji Yoshimoto?

Claim your profile

Publications (112)223.15 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The literature described that neural damage caused by ischemia definitely occurs in brain areas. However, few studies have shown real-time changes of extracellular monoamine levels at the time of transient ischemia. Methods We examined changes in the responses of dopamine (DA) and serotonin (5-HT) release in the nucleus accumbens (ACC) of rats treated with four-vessel occlusion (4VO) in experiment 1. In the second experiment, we investigated the selective neural vulnerabilities among the ACC, lateral hypothalamus (LH), and frontal cortex (FC) of rats treated with 4VO and four days of reperfusion. Results The extracellular levels of DA and 5-HT were remarkably increased 200- and 20-fold upon the 10-min clipping of both common carotid arteries in transient cerebral ischemia, respectively. Each increased monoamine release returned to the baseline levels immediately. The release of DA in the ACC and FC was significantly decreased in the rats treated with the coagulation of bilateral vertebral arteries (2VO), compared with that of sham-operated rats. K+-induced DA release in the ACC and FC of 4VO-treated rats was increased without alteration of DA content. Discussion Surviving dopaminergic neurons in the ACC and FC showed neural hyperfunction associated with the monoamine release, serotonergic neurons in particular these areas exhibiting functional resistance to the transient ischemic change. Conclusion It is suggested that the remarkable extracellular release of DA and 5-HT was not the cause of the ischemic delayed neural degeneration in each brain area, and that the functions of neurotransmitter release involved remarkable resistance to the transient ischemia.
    Pathophysiology. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The freshwater planarian Dugesia japonica has a simple central nervous system (CNS) and can regenerate complete organs, even a functional brain. Recent studies demonstrated that there is a great variety of neuronal-related genes, specifically expressed in several domains of the planarian brain. We identified a planarian dat gene, named it D. japonica dopamine transporter (Djdat), and analyzed its expression and function. Both in situ hybridization and immunofluorescence revealed that localization of Djdat mRNA and protein was the same as that of D. japonica tyrosine hydroxylase (DjTH). Although, dopamine (DA) content in Djdat(RNAi) planarians was not altered, Djdat(RNAi) planarians showed increased spontaneous locomotion. The hyperactivity in the Djdat(RNAi) planarians was significantly suppressed by SCH23390 or sulpiride pretreatment, which are D1 or D2 receptor antagonists, respectively. These results suggest that planarians have a Djdat ortholog and the ability to regulate dopaminergic neurotransmission and association with spontaneous locomotion.
    Biochemical and Biophysical Research Communications 07/2014; 449(4):412–418. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The freshwater planarian Dugesia japonica has a simple central nervous system (CNS) and can regenerate complete organs, even a functional brain. Recent studies demonstrated that there is a great variety of neuronal-related genes, specifically expressed in several domains of the planarian brain. We identified a planarian dat gene, named it D. japonica dopamine transporter (Djdat), and analyzed its expression and function. Both in situ hybridization and immunofluorescence revealed that localization of Djdat mRNA and protein was the same as that of D. japonicatyrosine hydroxylase (DjTH). Although, dopamine (DA) content in Djdat(RNAi) planarians was not altered, Djdat(RNAi) planarians showed increased spontaneous locomotion. The hyperactivity in the Djdat(RNAi) planarians was significantly suppressed by SCH23390 or sulpiride pretreatment, which are D1 or D2 receptor antagonists, respectively. These results suggest that planarians have a Djdat ortholog and the ability to regulate dopaminergic neurotransmission and association with spontaneous locomotion.
    Biochemical and Biophysical Research Communications 05/2014; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Miglitol is an oral anti-diabetic drug that acts by inhibiting carbohydrate absorption in the small intestine. Recent studies have shown that miglitol reduces obesity in humans and rodents. However, its mechanisms have remained unclear. The purpose of this study was to determine whether miglitol generates heat by activating uncoupling protein 1 (UCP1), an enzyme involved in thermogenesis, in brown adipose tissue (BAT) in mice. Four-week-old male C57BL/6 J mice were fed a high-fat diet alone (HF) or a high fat diet plus miglitol (HFM). Oxygen consumption (VO2) was used to estimate metabolic rate. A thermal imaging camera was used to quantify heat generation from interscapular brown adipose tissue. We analyzed the protein and gene expressions of UCP1 and the expressions of four proteins related to beta3-adrenergic signaling in the pathway activating UCP1 (protein kinase A (PKA), hormone-sensitive lipase (HSL), p38 alpha mitogen-activated protein kinase (p38alphaMAPK) and peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1alpha)). At 8 weeks, body weight, epididymal and subcutaneous white adipose tissue and the HOMA-R value of the HFM mice were significantly less than those of the HF mice. Food intake was not different between the HF and HFM mice. VO2 and BAT temperature were significantly higher in the HFM mice. Miglitol significantly enhanced the gene and protein expressions of UCP1 and the expressions of proteins related to beta3-adrenergic signaling. Miglitol's anti-obesity effect was attributed to increased energy expenditure by upregulating UCP1 in BAT (i.e., by thermogenesis) and to enhancement of beta3-adrenergic signaling in BAT.
    Nutrition & Metabolism 03/2014; 11(1):14. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We have reported that pH values of ascites and interstitial fluids around the liver in Otsuka Long-Evans Tokushima Fatty (OLETF) rats are significantly lower than normal pH, 7.40, of mammalian body fluids (Biochem Biophys Res Commun 2013, 432:650), and that this lowered pH of interstitial fluid causes the insulin resistance in diabetic patients by decreasing insulin-binding to its receptors (J Physiol Sci 2013, 63:S199). In the preset study, we tried to measure the interstitial fluid pH in diabetic OLETF rats, since the interstitial fluid pH plays key factors in the brain function from a viewpoint of the binding affinity of neurotransmitters to their receptors. Findings We found that the pH value of interstitial fluids around hippocampus, the most important area for memory, in diabetic OLETF rats was lower than that in normal rats by measuring pH with antimony pH electrodes. Conclusions The lowered pH of interstitial fluid around hippocampus of the brain in diabetic rats observed in the present study suggests that the function of hippocampus of the brain would be diminished due to low affinity of various types of neurotransmitters, playing key roles in the hippocampus function, to their receptors. Therefore, we indicate that maintenance of the interstitial fluid pH at the normal level would be one of the most important key factors for molecular and cellular therapies in various types of diseases including diabetes mellitus.
    Molecular and Cellular Therapies. 03/2014; 2:6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin 2C receptors (5-HT2CR) are G-protein-coupled receptors with various actions, including involvement in drug addiction. 5-HT2CR undergoes mRNA editing, converting genomically encoded adenosine residues to inosines via adenosine deaminases acting on RNA (ADARs). Here we show that enhanced alcohol drinking behaviour in mice is associated with the degree of 5-HT2CR mRNA editing in the nucleus accumbens and dorsal raphe nuceus, brain regions important for reward and addiction. Following chronic alcohol vapour exposure, voluntary alcohol intake increased in C57BL/6J mice, but remained unchanged in C3H/HeJ and DBA/2J mice. 5-HT2CR mRNA editing frequency in both regions increased significantly in C57BL/6J mice, as did expressions of 5-HT2CR, ADAR1 and ADAR2, but not in other strains. Moreover, mice that exclusively express the unedited isoform (INI) of 5-HT2CR mRNA on a C57BL/6J background did not exhibit increased alcohol intake compared with wild-type mice. Our results indicate that alterations in 5-HT2CR mRNA editing underlie alcohol preference in mice.
    The International Journal of Neuropsychopharmacology 12/2013; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MeCP2) gene. In previous studies, monoaminergic dysfunctions have been detected in patients with RTT and in a murine model of RTT, the Mecp2-null mouse. Therefore, the pathogenesis of RTT is thought to involve impairments in the monoaminergic systems. However, there have been limited data showing that the impairment of monoamines leads to early symptoms during development. We used histochemistry to study the somatosensory barrel cortex in the B6.129P2(C)-Mecp2(tm1.1Bird) mouse model of RTT. The barrel cortex is widely used to investigate neuronal development and its regulation by various neurotransmitters including 5-HT. 5-HT levels were measured by high performance liquid chromatography with electrochemical detection (HPLC/EC), and serotonin transporter (SERT) and 5-HT1B receptor mRNAs were measured in the somatosensory cortex, thalamus and striatum on postnatal days (P) 10, P20 and P40. Mecp2-null mice (Mecp2-/y) had significantly smaller barrel fields than age-matched wild-type controls (Mecp2+/y) on P10 and P40, but the topographic map was accurately formed. Levels of 5-HT, and SERT and 5-HT1B receptor mRNA expression in the somatosensory cortex did not differ significantly between the Mecp2-null and wild-type mice on P10. However, thalamic 5-HT was reduced in Mecp2-null mice. Our data indicate that a lack of MeCP2 may disturb the refinement of the barrel cortex in the early postnatal period. Our findings suggest that a decrease in thalamic 5-HT might be involved in this phenomenon.
    Brain research 09/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol consumption causes serious liver injury including cirrhosis and hepatocellular carcinoma. Ethanol is metabolized mainly in the liver to acetic acid through acetaldehyde. We investigated the effect of ethanol and acetaldehyde on polyamine metabolism since polyamines are essential factors for normal cellular functions. We found that acetaldehyde induced spermine oxidase (SMO) at the transcriptional level in HepG2 cells. The levels and activities of ornithine decarboxylase (ODC) and spermidine/spermine acetyltransferase (SSAT) were not affected by acetaldehyde. Spermidine content was increased and spermine content was decreased by acetaldehyde treatment. Knockdown of SMO expression using siRNA reduced acetaldehyde toxicity. Acetaldehyde exposure increased free acrolein levels. An increase of acrolein by acetaldehyde was SMO dependent. Our results indicate that cytotoxicity of acetaldehyde involves, at least in part, oxidation of spermine to spermidine by SMO, which is induced by acetaldehyde.
    Toxicology 05/2013; · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To appreciate the potential applications of stem cell technology in neurodegenerative diseases, including Parkinson's disease (PD), it is important to understand the characteristics of the various types of stem cells. In this study, we designed a set of experiments to compare the ability of three types of human stem cells-mesenchymal stem cells (MSCs), bone marrow CD34(+) cells (BM), and cord blood CD34(+) cells (CB)-using rotenone-treated NOD/SCID mice. Rotenone was orally administered once daily at a dose of 30 mg/kg for 56 days to induce a parkinsonian phenotype. Intravenous delivery of CB into rotenone-treated mice was slightly more beneficial than that of MSCs or BM according to both histological and behavioral analyses. Human nucleus (hNu)(+) cells, which are a specific marker of human cells, were observed in the striatum of rotenone-treated mice transplanted with stem cells. These hNu(+) cells expressed tyrosine hydroxylase (TH). Additionally, α-synuclein(+) /TH(+) cells in the substantia nigra pars compacta decreased significantly following stem cell transplantation. Immunohistochemical analysis also revealed that chronic exposure to rotenone decreased glial cell line-derived neurotrophic factor immunoreactivity and that the reduction was improved by each stem cell transplantation. Gene expression analyses revealed that MSCs, BM, and CB expressed several neurotrophic factors. These results suggest that the beneficial effects of intravenous delivery of stem cells into rotenone-treated mice may result not only from a neurotrophic effect but also from endogenous brain repair mechanisms and the potential of intravenous delivery of stem cells derived from an autologous source for clinical applications in PD. © 2012 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 10/2012; · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DJ-1/PARK7 has multiple functions as an antioxidant, an oncogene, and a molecular chaperone in vertebrates, and loss-of-function mutations in DJ-1 cause early onset of Parkinson's disease. However, the function of invertebrate DJ-1 remains unknown. In order to investigate the function of planarian DJ-1, we isolated the planarian DJ-1 gene Dugesia japonica DJ-1 (DjDJ-1) and analyzed its expression and function. In situ hybridization analysis revealed that DjDJ-1 mRNA was expressed throughout the body, including the central nervous system, cells surrounding the pharynx, and stem cells. Planarian DjDJ-1 protein exhibited antioxidant function, similar to human DJ-1, as evidenced by the fact that recombinant DjDJ-1 protein reduced reactive oxygen species and protected human neuroblastoma SH-SY5Y cells from cell death. In addition, dopaminergic neurons in DjDJ-1(RNAi) planarians became susceptible to 6-hydroxydopamine, a dopaminergic neurotoxin. These results suggest that planarians have a DJ-1 ortholog, which has conserved antioxidant and neuroprotective functions.
    Neuroscience Research 09/2012; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rotenone, a commonly used lipophic pesticide, is a high-affinity mitochondrial complex I inhibitor. The aim of this project is to study the causal relationship between changes of brain monoamine levels and drinking behavior in rotenone-treated mice. In the first experiment, we investigated the effects of acute exposure to rotenone (20 mg/kg, p.o.) on the 8-h time limited-access alcohol drinking behavior and brain monoamine levels in C57BL/6J mice at 0, 2, 8 and 24 h. Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5HIAA) levels in the nucleus accumbens (ACC), caudate-putamen (C/P) and lateral hypothalamus (LH) of rotenone-treated mice were decreased at 2 and/or 8 h. Rotenone-exposed mice showed a suppression of voluntary alcohol intake at 4 and 8 h, but total daily alcohol intake did not differ significantly between the two groups. The effects of chronic exposure to rotenone (1, 5, 10 and 20 mg/kg, p.o. for 30 days) on the alcohol drinking behavior and monoamine levels of rotenone-exposed mice (10 mg/kg, p.o.) were investigated in the second experiment. The mice treated with rotenone showed increases in alcohol drinking behavior. Levels of DA and 5-HT in the ACC and C/P of chronic rotenone-treated mice were decreased, while the ratios of DOPAC to DA in the ACC and C/P and of 5HIAA to 5-HT in the ACC, C/P and DRN were increased significantly. Tyrosine hydroxylase immunoreactivity of chronic rotenone-treated mice (10 mg/kg, p.o.) slightly were decreased in both the striatum and the substantia nigra. Ethanol and acetaldehyde metabolism was not significantly different between mice treated with rotenone (10 mg/kg, p.o.) and controls. It was suggested that rotenone-treated mice had increased alcohol drinking behavior associated with increases in the DA turnover ratios of ACC and striatum to compensate for the neural degeneration.
    Legal Medicine 04/2012; 14(5):229-38. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-Dihydroxyphenylalanine (L-DOPA) is considered the gold standard for the treatment of Parkinson's disease (PD). However, long-term administration of L-DOPA can induce abnormal side effects. On the other hand, selective serotonin reuptake inhibitors (SSRIs) including fluoxetine have gained tremendous popularity in the treatment of depression in PD. SSRIs are thought to influence motor function in PD via pharmacological modification of interactions between serotonergic and dopaminergic networks, which are complex and not yet fully understand. In this study, intranigral injection of 6-hydroxydopamine (6-OHDA) in rats caused a significant loss of tyrosine hydroxylase immunoreactivity in the striatum and substantia nigra. However, tryptophan hydroxylase immunoreactivity of the striatum and raphe nucleus was unaffected by 6-OHDA. Immunohistochemical analysis reveal that the serotonergic system was unaffected by the injection of 6-OHDA. We demonstrated also that pre-treatment with fluoxetine significantly suppressed L-DOPA-induced rotational behavior. Additionally, fluoxetine suppressed L-DOPA-induced ERK1/2 and histone H3 phosphorylation. These effects of fluoxetine were abolished by pre-treatment with WAY 100135, a 5-HT(1A) antagonist. These results suggest that fluoxetine may influence motor function in PD via pharmacological modification of interactions between serotonergic and dopaminergic neuronal networks.
    Journal of Pharmacological Sciences 04/2012; 119(1):10-9. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine and serotonin (5-HT) in the nucleus accumbens (ACC) and ventral tegmental area of the mesoaccumbens reward pathways have been implicated in the mechanisms underlying development of alcohol dependence. We used a C57BL/6J mouse model with increased voluntary alcohol-drinking behavior by exposing the mice to alcohol vapor for 20 consecutive days. In the alcohol-exposed mice, the expression of 5-HT(2C) receptor mRNA increased in the ACC, caudate nucleus and putamen, dorsal raphe nucleus (DRN), hippocampus and lateral hypothalamus, while the protein level of 5-HT(2C) receptor significantly increased in the ACC. The expression of 5-HT(7) receptor mRNA increased in the ACC and DRN. Contents of 5-HT decreased in the ACC shell (ACC(S) ) and DRN of the alcohol-exposed mice. The basal extracellular releases of dopamine (DA) and 5-HT in the ACC(S) increased more in the alcohol-exposed mice than in alcohol-naïve mice. The magnitude of the alcohol-induced ACC(S) DA and 5-HT release in the alcohol-exposed mice was increased compared with the control mice. Intraperitoneal (i.p.) administration or local injection into ACC(S) of the 5-HT(2C) receptor antagonist, SB-242084, suppressed voluntary alcohol-drinking behavior in the alcohol-exposed mice. But the i.p. administration of the 5-HT(7) receptor antagonist, SB-258719, did not have significant effects on alcohol-drinking behavior in the alcohol-exposed mice. The effects of the 5-HT(2C) receptor antagonist were not observed in the air-exposed control mice. These results suggest that adaptations of the 5-HT system, especially the upregulation of 5-HT(2C) receptors in the ACC(S) , are involved in the development of enhanced voluntary alcohol-drinking behavior.
    European Journal of Neuroscience 04/2012; 35(8):1368-80. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of moxibustion today does not only take place in Eastern Asia, but recently also in Europe and the United States. Moxibustion scars are often seen in autopsy cases in Japan. However, no reports of the use of moxibustion in autopsy cases have been reported. This paper reports on an autopsy case in which moxibustion scars were used to extrapolate on the past symptoms of the deceased, date of therapy and the location of the moxibustion clinic which administered the moxibustion.
    Forensic science international 01/2012; 219(1-3):e25-8. · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several useful spin trap agents have been identified for the identification and quantification of biological oxygen radicals. Among them, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used most frequently as a spin trap agent. The function of DMPO in vivo, however, is still unclear. Thus, the purpose of this study was to evaluate the effect of DMPO in an in vivo model of Parkinson's disease (PD). Rats were microinjected with 6-hydroxydopamine (6-OHDA, 32 nmol) in the presence or absence of DMPO (0.4, 4 nmol). We investigated behavioral and histochemical parameters in this rat model of PD. In addition, to examine the effect of DMPO against oxidative stress, we performed an electron spin resonance (ESR) analysis. Intranigral injection of 6-OHDA alone caused behavioral dysfunction and a massive loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc). Co-microinjection of 4 nmol DMPO, but not 0.4 nmol, significantly prevented 6-OHDA-induced behavioral impairments and dopaminergic neurodegeneration. In ESR analysis, DMPO directly trapped hydroxyl radical ((·)OH) generated from 6-OHDA and Fe(2+) in a concentration-dependent manner. These results suggest that DMPO attenuates 6-OHDA-induced dopaminergic neurodegeneration in a rat model of PD via scavenging (·)OH, and is a useful tool for biological research of oxidative stresses.
    Biological & Pharmaceutical Bulletin 01/2012; 35(9):1603-6. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Planarians have robust regenerative ability dependent on X-ray-sensitive pluripotent stem cells, called neoblasts. Here, we report that planarians can regenerate dopaminergic neurons after selective degeneration of these neurons caused by treatment with a dopaminergic neurotoxin (6-hydroxydopamine; 6-OHDA). This suggests that planarians have a system to sense the degeneration of dopaminergic neurons and to recruit stem cells to produce dopaminergic neurons to recover brain morphology and function. We confirmed that X-ray-irradiated planarians do not regenerate brain dopaminergic neurons after 6-OHDA-induced lesioning, suggesting that newly generated dopaminergic neurons are indeed derived from pluripotent stem cells. However, we found that the majority of regenerated dopaminergic neurons were 5-bromo-2'-deoxyuridine-negative cells. Therefore, we carefully analyzed when proliferating stem cells became committed to become dopaminergic neurons during regeneration by a combination of 5-bromo-2'-deoxyuridine pulse-chase experiments, immunostaining/in situ hybridization, and 5-fluorouracil treatment. The results strongly suggested that G(2) -phase stem cells become committed to dopaminergic neurons in the mesenchymal space around the brain, after migration from the trunk region following S-phase. These new findings obtained from planarian regeneration provide hints about how to conduct cell-transplantation therapy for future regenerative medicine.
    Journal of Neurochemistry 12/2011; 119(6):1217-31. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin has ubiquitous actions, both as a direct free-radical scavenger and as an indirect anti-oxidant. The present study examined in vivo neuroprotective effects of melatonin on the nigrostriatal dopaminergic system in zitter (zi/zi) rat, which displays abnormal metabolism of superoxide leading to age-related degeneration of the dopaminergic system. For up to 9 months after weaning, zi/zi rats had ad libitum access to drinking water containing melatonin. Chronic treatment with melatonin attenuated the decreases of dopamine and its metabolite in zi/zi rat caudate-putamen (CPU). Immunohistochemistry for tyrosine hydroxylase (TH) was consistent with neurochemical data in the CPU and demonstrated substantial sparing of the reduction of TH-immunoreactive neurons in the substantia nigra pars compacta. Quantitative polymerase chain reaction (qPCR) was performed to analyze mRNA expressions of pro-inflammatory cytokines (IL-1β and TNF-α) and the anti-oxidant enzymes (catalase (CAT), superoxide dismutase (SOD) 1 and 2, and glutathione peroxidase (GPx1)) in the striatum and midbrain in order to examine the neuroprotective effect of melatonin. IL-1β and TNF-α mRNA expressions were significantly increased in both areas of 3-month-old zi/zi rats, whereas there was a significant decrease in CAT mRNA expression in the striatum of 6-month-old zi/zi rat as compared to age-matched controls. With the exception of the high TNF-α mRNA expression in 3-month-old zi/zi midbrains, chronic treatment of melatonin attenuated expressional changes of IL-1β, CAT, SOD1, and GPx1. These results suggest that besides its direct scavenger effects, chronic melatonin treatment provides a neuroprotective effect against dopaminergic degeneration by suppressing pro-inflammatory cytokines and up-regulating anti-oxidant enzyme expression.
    Neuroscience Letters 10/2011; 506(1):79-83. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, in the field of forensic medicine the number of unidentified cadavers has increased due to mass disasters and international terrorism. In addition to the conventional anthropological methods, a simple and precise method to estimate the age of these unidentified cadavers to assist in the personal identification is necessary. On the other hand, many researchers have reported that mitochondrial respiratory activity decreases with aging because of the production of reactive oxidative species in the process of ATP generation. Therefore, it may be possible for us to estimate human age by analyzing mitochondrial activity. In this report we attempted to analyze cytochrome c oxidase (CCO) activity, and the amount of protein and mRNA expression in various aged rats. The age of human subjects was estimated through the analysis of human CCO activity from 28 actual forensic cases. The CCO activity, the amount of protein and the mRNA expression increased in the 3rd week and decreased afterwards in rats. Furthermore, human CCO activity was decreased gradually with aging. Therefore, CCO activity analysis may be useful for age estimation in forensic cases.
    Forensic science international 01/2011; 209(1-3):48-52. · 2.10 Impact Factor
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence in humans demonstrates that visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson's disease (PD). Ezrin, radixin, and moesin are collectively known as ERM proteins. Although ERM proteins have important implications in cell-shape determination and relevant signaling pathway, they have not been studied in the hippocampus in association with visuo-spatial memory impairments. The purpose of the present study is to examine whether the expression level of ERM proteins in the hippocampus is changed by an intrastriatal injection of 6-hydroxydopamine (6-OHDA) in mice. The intrastriatal injection of 6-OHDA induced partial dopaminergic deficits and spatial memory impairments. We also found that ezrin was increased in the hippocampus by the microinjection of 6-OHDA. On the other hand, protein levels of radixin and moesin were not influenced by 6-OHDA lesions. These results suggest that excessive ezrin may be related to visuo-spatial memory impairments.
    Biological & Pharmaceutical Bulletin 01/2011; 34(11):1753-8. · 1.85 Impact Factor

Publication Stats

868 Citations
223.15 Total Impact Points

Institutions

  • 2014
    • Hiroshima Institute of Technology
      Hirosima, Hiroshima, Japan
  • 1984–2013
    • Kyoto Prefectural University of Medicine
      • • Graduate School of Medical Science
      • • Department of Psychiatry
      • • Department of Legal Medicine
      Kioto, Kyōto, Japan
  • 2006–2012
    • Kyoto Pharmaceutical University
      • Laboratory of Clinical and Translational Physiology
      Kioto, Kyōto, Japan
  • 2011
    • Kyoto University
      • Department of Biophysics
      Kyoto, Kyoto-fu, Japan
  • 1998–2009
    • Dokkyo Medical University
      • • Department of Neurology
      • • Department of Histology and Neurobiology
      Tochigi, Tochigi-ken, Japan
  • 2007
    • Kyoto Prefectural University
      Kioto, Kyōto, Japan
  • 2002
    • Meiji University of Oriental Medicine
      Kioto, Kyōto, Japan
  • 2000
    • Banner Sun Health Research Institute
      Sun City, Arizona, United States
  • 1990–1991
    • University of the Ryukyus
      • • Faculty of Medicine
      • • Department of Health Sciences
      Okinawa, Okinawa-ken, Japan
    • Kosei Chuo General Hospital
      Edo, Tōkyō, Japan