W Todd Miller

Stony Brook University, Stony Brook, New York, United States

Are you W Todd Miller?

Claim your profile

Publications (52)313.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of the phosphotyrosine-based signaling system predated the evolution of multicellular animals. Single-celled choanoflagellates, the closest living relatives to metazoans, possess numerous tyrosine kinases, including Src family nonreceptor tyrosine kinases. Choanoflagellates also have Csk (C-terminal Src kinase), the enzyme that regulates Src in metazoans; however, choanoflagellate Csk kinases fail to repress the cognate Src. Here, we have cloned and characterized Src and Csk kinases from Ministeria vibrans, a filasterean (the sister group to metazoans and choanoflagellates). The two Src kinases (MvSrc1 and MvSrc2) are enzymatically active Src kinases, although they have low activity towards mammalian cellular proteins. Unexpectedly, MvSrc2 has significant Ser/Thr kinase activity. The Csk homolog (MvCsk) is enzymatically inactive, and fails to repress MvSrc activity. We suggest that the low activity of MvCsk is due to sequences in the SH2/kinase interface, and we show that a point mutation in this region partially restores MvCsk activity. The inactivity of filasterean Csk kinases is consistent with a model in which the stringent regulation of Src family kinases arose more recently in evolution, after the split between choanoflagellates and multicellular animals.
    Biochemistry 02/2014; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin (PDPN) is a transmembrane receptor that affects the activities of RHO, ezrin, and other proteins to promote tumor cell motility, invasion, and metastasis. PDPN is found in many types of cancer and may serve as a tumor biomarker and chemotherapeutic target. The intracellular region of PDPN contains only two serines, and these are conserved in mammals including mice and humans. We generated cells from the embryos of homozygous null PDPN knockout mice to investigate the relevance of these serines to cell growth and migration on a clear (PDPN free) background. We report here that one or both of these serines can be phosphorylated by PKA (protein kinase A). We also report that conversion of these serines to nonphosphorylatable alanine residues enhances cell migration, while their conversion to phosphomimetic aspartate residues decreases cell migration. These results indicate that PKA can phosphorylate PDPN to decrease cell migration. In addition, we report that PDPN expression in fibroblasts causes them to facilitate the motility and viability of neighboring melanoma cells in coculture. These findings shed new light on how PDPN promotes cell motility, its role in tumorigenesis, and its utility as a functionally relevant biomarker and chemotherapeutic target.
    Journal of Biological Chemistry 03/2013; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Receptor tyrosine kinases (RTKs) are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. RESULTS: We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2) in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence) served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. CONCLUSIONS: Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins) and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.
    BMC Biochemistry 02/2013; 14(1):4. · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.
    Biochemistry 10/2012; 51(41):8267–8277. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of Src in tumorigenesis has been extensively studied since the work of Peyton Rous over a hundred years ago. Src is a non-receptor tyrosine kinase that plays key roles in signaling pathways controlling tumor cell growth and migration. Src regulates the activities of numerous molecules to induce cell transformation. However, transformed cells do not always migrate and realize their tumorigenic potential. They can be normalized by surrounding nontransformed cells by a process called contact normalization. Tumor cells need to override contact normalization to become malignant or metastatic. In this review, we discuss the role of Src in cell migration and contact normalization, with emphasis on Cas and Abl pathways. This paradigm illuminates several chemotherapeutic targets and may lead to the identification of new biomarkers and the development of effective anticancer treatments.
    Genes & cancer 05/2012; 3(5-6):426-35.
  • Source
    W Todd Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine phosphorylation is an essential element of signal transduction in multicellular animals. Although tyrosine kinases were originally regarded as specific to the metazoan lineage, it is now clear that they evolved prior to the split between unicellular and multicellular eukaryotes (≈600million years ago). Genome analyses of choanoflagellates and other protists show an abundance of tyrosine kinases that rivals the most complex animals. Some of these kinases are orthologs of metazoan enzymes (e.g., Src), but others display unique domain compositions not seen in any metazoan. Biochemical experiments have highlighted similarities and differences between the unicellular and multicellular tyrosine kinases. In particular, it appears that the complex systems of kinase autoregulation may have evolved later in the metazoan lineage.
    Biochimica et Biophysica Acta 03/2012; 1823(6):1053-7. · 4.66 Impact Factor
  • Source
    Barbara P Craddock, W Todd Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: The insulin-like growth factor I receptor (IGF1R) is overexpressed in several forms of human cancer, and it has emerged as an important target for anticancer drug design. Cancer genome sequencing efforts have recently identified three somatic mutations in IGF1R: A1374V, a deletion of S1278 in the C-terminal tail region of the receptor, and M1255I in the C-terminal lobe of the kinase catalytic domain. The possible effects of these mutations on IGF1R activity and biological function have not previously been tested. Here, we tested the effects of the mutations on the in vitro biochemical activity of IGF1R and on major IGF1R signaling pathways in mammalian cells. While the mutations do not affect the intrinsic tyrosine kinase activity of the receptor, we demonstrate that the basal (unstimulated) levels of MAP kinase and Akt activation are increased in the mutants (relative to wild-type IGF1R). We hypothesize that the enhanced signaling potential of these mutants is due to changes in protein-protein interactions between the IGF1R C-terminus and cellular substrates or modulators.
    Journal of signal transduction. 01/2012; 2012:804801.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.
    PLoS ONE 01/2011; 6(4):e19296. · 3.53 Impact Factor
  • Source
    Victoria Prieto-Echagüe, W Todd Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.
    Journal of signal transduction. 01/2011; 2011:742372.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms that regulate the activity of the nonreceptor tyrosine kinase Ack1 (activated Cdc42-associated kinase) are poorly understood. The amino-terminal region of Ack1 is predicted to contain a sterile alpha motif (SAM) domain. SAM domains share a common fold and mediate protein-protein interactions in a wide variety of proteins. Here, we addressed the importance of the Ack1 SAM domain in kinase activity. We used immunofluorescence and Western blotting to show that Ack1 deletion mutants lacking the N-terminus displayed significantly reduced autophosphorylation in cells. A minimal construct comprising the N-terminus and kinase domain (NKD) was autophosphorylated, while the kinase domain alone (KD) was not. When expressed in mammalian cells, NKD localized to the plasma membrane, while KD showed a more diffuse cytosolic localization. Co-immunoprecipitation experiments showed a stronger interaction between full length Ack1 and NKD than between full length Ack1 and KD, indicating that the N-terminus was important for Ack1 dimerization. Increasing the local concentration of purified Ack1 kinase domain at the surface of lipid vesicles stimulated autophosphorylation and catalytic activity, consistent with a requirement for dimerization and trans-phosphorylation for activity. Collectively, the data suggest that the N-terminus of Ack1 promotes membrane localization and dimerization to allow for autophosphorylation.
    BMC Biochemistry 10/2010; 11:42. · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ack1 is a nonreceptor tyrosine kinase that participates in tumorigenesis, cell survival, and migration. Relatively little is known about the mechanisms that regulate Ack1 activity. Recently, four somatic missense mutations of Ack1 were identified in cancer tissue samples, but the effects on Ack1 activity, and function have not been described. These mutations occur in the N-terminal region, the C-lobe of the kinase domain, and the SH3 domain. Here, we show that the cancer-associated mutations increase Ack1 autophosphorylation in mammalian cells without affecting localization and increase Ack1 activity in immune complex kinase assays. The cancer-associated mutations potentiate the ability of Ack1 to promote proliferation and migration, suggesting that point mutation is a mechanism for Ack1 deregulation. We propose that the C-terminal Mig6 homology region (MHR) (residues 802-990) participates in inhibitory intramolecular interactions. The isolated kinase domain of Ack1 interacts directly with the MHR, and the cancer-associated E346K mutation prevents binding. Likewise, mutation of a key hydrophobic residue in the MHR (Phe(820)) prevents the MHR-kinase interaction, activates Ack1, and increases cell migration. Thus, the cancer-associated mutation E346K appears to destabilize an autoinhibited conformation of Ack1, leading to constitutively high Ack1 activity.
    Journal of Biological Chemistry 04/2010; 285(14):10605-15. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Src family kinases (SFKs) are modular signaling proteins possessing SH3, SH2, and tyrosine kinase domains. The SH3 and SH2 domains of SFKs have dual roles: they regulate the activity of the kinases, and they also target SFKs to their cellular substrates. We generated a series of novel SFKs by replacing the SH2 and SH3 domains of Hck with the syntrophin PDZ domain. In some constructs, the negative regulatory tyrosine in the C-terminal tail was also replaced with a PDZ ligand sequence. When expressed in mammalian cells, the substrate specificity of the PDZ-kinases was directed to a different group of proteins than wild-type Hck. The PDZ-kinases phosphorylate neuronal nitric oxide synthase (nNOS), a known binding partner of the syntrophin PDZ domain. We also introduced a PDZ ligand at the C-terminus of the adaptor protein Cas. PDZ-Hck kinases phosphorylate the engineered Cas protein in Cas(-/-) cells and restore the migration defect of these cells. A PDZ-kinase was also functional in rewiring MAPK signaling via an engineered ErbB2 construct containing a PDZ ligand sequence. Several of the PDZ-kinases show autoregulatory properties similar to natural SFKs. Thus, the PDZ-ligand interaction is able to functionally replace the normal SH2-pY527 interaction that regulates SFKs. Our data highlight the modularity and evolvability of signaling proteins.
    Biochemistry 10/2009; 48(46):10956-62. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adaptor protein Cas contains a core substrate domain with multiple YXXP motifs that are phosphorylated by Src and other tyrosine kinases. Here, we used a synthetic strategy to determine the importance of the arrangement, spacing, and identity of the YXXP motifs. By polymerizing short DNA sequences encoding two phosphorylation motifs, we created a panel of Cas mutants in which the entire substrate domain was replaced by synthetic domains containing random numbers and arrangements of the motifs. Most of these synthetic Cas variants were recognized and phosphorylated by Src in vitro and in intact mammalian cells. The random polymer mutants also restored migration activity to Cas knockout cells; even artificial proteins containing a single motif retained some biological function. Our results suggest that the arrangement of Cas motifs is not critical for signaling. This method could be used to identify the minimal functional units in other signaling proteins.
    ACS Chemical Biology 09/2009; 4(9):751-8. · 5.44 Impact Factor
  • Source
    Wanqing Li, Suzanne Scarlata, W Todd Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: Until recently, phosphotyrosine signaling was thought to be restricted to multicellular animals. Surprisingly, the unicellular choanoflagellate Monosiga brevicollis contains a number and diversity of tyrosine kinases that exceeds that of any metazoan, including humans. Many of these M. brevicollis tyrosine kinases possess combinations of signaling domains that do not occur in metazoans. One such kinase, the Src-like protein MbSrc4, contains a lipid-binding C2 domain N-terminal to the conserved SH3-SH2-kinase domains. Here, we report that the enzyme is highly active as a tyrosine kinase and that the targeting functions of the C2, SH3, and SH2 domains are similar to the mammalian counterparts. The membrane-binding activity of the C2 domain is functionally equivalent to the myristoylation signal of c-Src, suggesting that it is an example of convergent evolution. When expressed in mammalian cells, full-length MbSrc4 displays low activity toward endogenous proteins, and it cannot functionally substitute for mammalian c-Src in a reporter gene assay. Removal of the MbSrc4 C2 domain leads to increased phosphorylation of cellular proteins. Thus, in contrast to the related M. brevicollis Src-like kinase MbSrc1, MbSrc4 is not targeted properly to mammalian Src substrates, suggesting that the C2 domain plays a specific role in M. brevicollis signaling.
    Biochemistry 06/2009; 48(23):5180-6. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 A away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.
    Proceedings of the National Academy of Sciences 01/2009; 105(50):19660-5. · 9.81 Impact Factor
  • W Todd Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: Biochemistry of Signal Transduction and Regulation by Gerhard Krauss is a one-volume introduction to the field of cell signaling best suited for undergraduates or beginning graduate students. The coverage of topics is broad and particularly strong regarding the regulation of gene expression in response to signaling.
    Science Signaling 01/2009; 2(101):pe79. · 7.65 Impact Factor
  • Source
    Shalini S Yadav, W Todd Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: The SH3-SH2-kinase domain arrangement in nonreceptor tyrosine kinases has been conserved throughout evolution. For Src family kinases, the relative positions of the domains are important for enzyme regulation; they permit the assembly of Src kinases into autoinhibited conformations. The SH3 and SH2 domains of Src family kinases have an additional role in determining the substrate specificity of the kinase. We addressed the question of whether the domain arrangement of Src family kinases has a role in substrate specificity by producing mutants with alternative arrangements. Our results suggest that changes in the positions of domains can lead to specific changes in the phosphorylation of Sam68 and Cas by Src. Phosphorylation of Cas by several mutants triggers downstream signaling leading to cell migration. The placement of the SH2 domain with respect to the catalytic domain of Src appears to be especially important for proper substrate recognition, while the placement of the SH3 domain is more flexible. The results suggest that the involvement of the SH3 and SH2 domains in substrate recognition is one reason for the strict conservation of the SH3-SH2-kinase architecture.
    Biochemistry 10/2008; 47(41):10871-80. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amplification of the receptor tyrosine kinase ErbB2 is frequently observed in breast cancer. Amplification of erbB2 is also associated with multiple genomic gains and losses; however, the importance of these associated changes is largely unknown. We demonstrate that Brk, a cytoplasmic tyrosine kinase, is coamplified and coexpressed with ErbB2 in human breast cancers. ErbB2 interacts with Brk and increases its intrinsic kinase activity. Expression of Brk enhances the ErbB2-induced activation of Ras/MAPK signaling and cyclin E/cdk2 activity to induce cell proliferation of mammary 3-dimensional acini in culture. In a murine model of breast cancer, expression of Brk was found to shorten the latency of ErbB2-induced tumors by promoting cell proliferation, with no effect on protection from apoptosis. Furthermore, overexpression of Brk conferred resistance to the ability of Lapatinib, an ErbB2 kinase inhibitor, to inhibit ErbB2-induced proliferation. Thus, we identified Brk as a drug target for ErbB2-positive cancers.
    Proceedings of the National Academy of Sciences 09/2008; 105(34):12463-8. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulatory mechanism of Src tyrosine kinases includes conformational activation by a change in the catalytic domain tertiary structure and in domain-domain contacts between the catalytic domain and the SH2/SH3 regulatory domains. The kinase is activated when tyrosine phosphorylation occurs on the activation loop, but without phosphorylation of the C-terminal tail. Activation also occurs by allostery when contacts between the catalytic domain (CD) and the regulatory SH3 and SH2 domains are released as a result of exogenous protein binding. The aim of this work is to examine the proposed role of an electrostatic network in the conformational transition and to elucidate the molecular mechanism for long-range, allosteric conformational activation by using a combination of experimental enzyme kinetics and nonequilibrium molecular dynamics simulations. Salt dependence of the induction phase is observed in kinetic assays and supports the role of an electrostatic network in the transition. In addition, simulations provide evidence that allosteric activation involves a concerted motion coupling highly conserved residues, and spanning several nanometers from the catalytic site to the regulatory domain interface to communicate between the CD and the regulatory domains.
    Protein Science 09/2008; 17(11):1871-80. · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine kinase signaling has long been considered a hallmark of intercellular communication, unique to multicellular animals. Our genomic analysis of the unicellular choanoflagellate Monosiga brevicollis discovers a remarkable count of 128 tyrosine kinases, 38 tyrosine phosphatases, and 123 phosphotyrosine (pTyr)-binding SH2 proteins, all higher counts than seen in any metazoan. This elaborate signaling network shows little orthology to metazoan counterparts yet displays many innovations reminiscent of metazoans. These include extracellular domains structurally related to those of metazoan receptor kinases, alternative methods for membrane anchoring and phosphotyrosine interaction in cytoplasmic kinases, and domain combinations that link kinases to small GTPase signaling and transcription. These proteins also display a wealth of combinations of known signaling domains. This uniquely divergent and elaborate signaling network illuminates the early evolution of pTyr signaling, explores innovative ways to traverse the cellular signaling circuitry, and shows extensive convergent evolution, highlighting pervasive constraints on pTyr signaling.
    Proceedings of the National Academy of Sciences 08/2008; 105(28):9674-9. · 9.81 Impact Factor

Publication Stats

2k Citations
313.06 Total Impact Points

Institutions

  • 2003–2014
    • Stony Brook University
      • • Department of Physiology & Biophysics
      • • Department of Medicine
      • • Department of Physiology and Biophysics
      Stony Brook, New York, United States
  • 2012
    • Stratford University
      Stratford, Connecticut, United States
  • 2005–2008
    • Stony Brook University Hospital
      Stony Brook, New York, United States
  • 2000–2008
    • State University of New York
      New York City, New York, United States
  • 2007
    • New York University
      • Skirball Institute of Biomolecular Medicine
      New York City, NY, United States
  • 2002
    • The Rockefeller University
      • Laboratory of Molecular Biophysics
      New York City, NY, United States