Hen-I Lin

Fu Jen Catholic University, T’ai-pei, Taipei, Taiwan

Are you Hen-I Lin?

Claim your profile

Publications (5)11.26 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The lung alveolar epithelium consists of type I and type II pneumocytes. In vivo, the type II cell is the progenitor cell from which the type I cell originates. When freshly-isolated type II cells are cultured under conventional conditions they rapidly lose their phenotypic properties and attain characteristics of type I cells. Taking advantage of this transdifferentiation, we sought to identify genes that are differentially expressed during culture of rat type II cells. Using suppression subtractive hybridization (SSH), a vacuolar-type H+-ATPase (V-ATPase) C2 subunit gene (Atp6v1c2) was found to be enriched in freshly isolated rat type II cells compared to those cultured for 4 days. Northern blotting and reverse-transcription polymerase chain reaction (RT-PCR) confirmed the differential expression of Atp6v1c2 during in vitro culture of isolated type II cells. Expression ofAtp6v1c2 was significantly reduced early during in vitro culture: almost 90% reduction was observed after 24 h of incubation as determined by real-time PCR. In situ hybridization showed that Atp6v1c2 is expressed in both bronchiolar and alveolar lung epithelial cells, an expression pattern similar to that of surfactant protein B (SP-B). Multi-tissue Northern blotting revealed a unique tissue distribution with Atp6v1c2 expression limited to lung, kidney and testis. The presence and expression of Atp6v1c2 gene transcript isoforms, resulting from alternative splicing, were also investigated. Elucidation of differential expression of Atp6v1c2 in type II cells and further studies of its regulation may provide information useful in understanding the molecular mechanism underlying phenotypic and functional changes during transdifferentiation of alveolar epithelial cells.
    Journal of Biomedical Science 01/2006; 12(6):899-911. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Beauvericin (BEA), a cyclic hexadepsipeptide from Codyceps cicadae, possesses anti-convulsion, anti-arrhythmia, sedation, and anti-tumor activities. It has been reported that BEA induces apoptosis in several cancer cell lines. However, the molecular mechanism underlying the BEA-induced apoptotic process is not yet clearly understood. In the present study, the intracellular signaling pathways of BEA-induced apoptosis in human non-small cell lung cancer (NSCLC) A549 cells were investigated using morphological analysis and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique. In this study, BEA-induced apoptosis in human NSCLC A549 cells demonstrated a BEA concentration- and treatment time-dependent manner. This BEA-induced apoptosis in human NSCLC A549 cells was also accompanied by the up-regulation of Bax, Bak, and p-Bad and down-regulation of p-Bcl-2, but no effect on the levels of Bcl-X(L) or Bad proteins. Moreover, the BEA treatment resulted in a significant reduction of mitochondrial membrane potential, increase in the release of mitochondrial cytochrome c (cyt c), and activation of caspase 3. Furthermore, treatment with caspase 3 inhibitor (z-DEVD-fmk) was capable to prevent the BEA-induced caspase 3 activity and cell death. These results clearly demonstrate that the induction of apoptosis by BEA involves multiple cellular/molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family proteins, mitochondrial membrane potential, mitochondrial cyt c, and caspase 3, they all participate in BEA-induced apoptotic process in human NSCLC A549 cells.
    Cancer Letters 01/2006; 230(2):248-59. · 4.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antioxidants have been shown to be effective in attenuating acute lung injury. In this study, we determine the effects of various antioxidants by different mechanisms on the lipopolysaccharide (LPS)-induced changes. LPS was administered intravenously at a dose of 10 mg/kg to anesthetized rats. LPS induced a significant decrease in blood pressure (P < 0.01) and increased exhaled nitric oxide (NO) from 3.60+/-0.18 to 35.53+/-3.23 ppb (P < 0.01) during an observation period of 4 h. Plasma nitrate concentrations also increased from 0.61+/-0.06 to 1.54+/-0.22 micromol/l (P < 0.05). LPS-induced oxygen radical release from white blood cells isolated from rat peripheral blood also increased significantly (P < 0.001). After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and manganese superoxide dismutase (MnSOD). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1beta, TNF-alpha and MnSOD were absent. Four hours after LPS administration, mRNA expressions of iNOS, IL-1beta, and MnSOD were significantly enhanced, but TNF-alpha was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial cell damage and interstitial edema. Various antioxidants were given 1 h after LPS administration. These agents include SOD, catalase (CAT), SOD + CAT or vitamin C (ascorbic acid). These antioxidants effectively reversed the systemic hypotension, reduced the quantity of exhaled NO and plasma nitrate concentration, and prevented acute lung injury. Administration of various antioxidants also significantly attenuated LPS-induced oxygen radical release by rat white blood cells. LPS induced mRNA expressions of MnSOD and iNOS were significantly depressed by these antioxidants. However, only SOD + CAT and vitamin C inhibited the mRNA expression of IL-1beta. These results suggest that oxygen radicals are responsible for LPS-induced lung injury. Antioxidants can attenuate the lung injury by inhibiting mRNA expressions of iNOS and IL-1beta.
    The Chinese journal of physiology 10/2004; 47(3):111-20. · 0.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.
    Clinical and Experimental Pharmacology and Physiology 09/2004; 31(8):523-9. · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The quantity and duration of production of tumor necrosis factor (TNF) is tightly controlled due to its potential to cause serious harm. For example, TNF release in response to overwhelming bacterial infection has been implicated as the first step in potentially lethal septic shock. Prostaglandins and leukotrienes are thought to play opposing roles in regulating TNF production by monocytes and macrophages. We investigated the effects of 5 drugs on the production of TNF by cells of the murine macrophage line RAW264 after stimulation with bacterial lipopolysaccharide endotoxin (LPS). These drugs were of the following 3 classes: cyclooxygenase inhibitors indomethacin (indo) and ibuprofen (ibu); 5-lipoxygenase inhibitors VZ 65 and AA-861; and methylxanthine pentoxyfilline (PTX). While indo and ibu treatment resulted in increased TNF production, PTX, VZ 65, and AA-861 significantly inhibited TNF production, whether administered simultaneously with LPS or 30 min after LPS treatment. VZ 65 and AA-861 also inhibited prostaglandin E2 (PGE2) production, coupled with an absence of any rise in intracellular cAMP. Leukotriene B4 (LTB4) levels peaked at 15 min and approached background level at 30 min after LPS treatment. Taken together, these data suggest that VZ 65 and AA-861 may inhibit TNF production through mechanism(s) independent of LTB4 production. VZ 65, AA-861, and PTX all diminished the rate of TNF mRNA transcription, yet VZ 65 and AA-861 appeared to enhance message stability. We conclude that while PTX reduced TNF protein levels by inhibiting TNF mRNA transcription, both VZ 65 and AA-861 exerted opposing effects on TNF transcription and increased mRNA stability.
    Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 03/2004; 37(1):8-15. · 1.63 Impact Factor