Jennifer L McGlothan

Columbia University, New York, New York, United States

Are you Jennifer L McGlothan?

Claim your profile

Publications (22)75.53 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Environmental factors have been associated with psychiatric disorders and recent epidemiological studies suggest an association between prenatal lead (Pb(2+)) exposure and schizophrenia (SZ). Pb(2+) is a potent antagonist of the N-methyl-D-aspartate receptor (NMDAR) and converging evidence indicates that NMDAR hypofunction has a key role in the pathophysiology of SZ. The glutamatergic hypothesis of SZ posits that NMDAR hypofunction results in the loss of parvalbumin (PV)-positive GABAergic interneurons (PVGI) in the brain. Loss of PVGI inhibitory control to pyramidal cells alters the excitatory drive to midbrain dopamine neurons increasing subcortical dopaminergic activity. We hypothesized that if Pb(2+) exposure in early life is an environmental risk factor for SZ, it should recapitulate the loss of PVGI and reproduce subcortical dopaminergic hyperactivity. We report that on postnatal day 50 (PN50), adolescence rats chronically exposed to Pb(2+) from gestation through adolescence exhibit loss of PVGI in SZ-relevant brain regions. PV and glutamic acid decarboxylase 67 kDa (GAD67) protein were significantly decreased in Pb(2+) exposed rats with no apparent change in calretinin or calbindin protein levels suggesting a selective effect on the PV phenotype of GABAergic interneurons. We also show that Pb(2+) animals exhibit a heightened locomotor response to cocaine and express significantly higher levels of dopamine metabolites and D2-dopamine receptors relative to controls indicative of subcortical dopaminergic hyperactivity. Our results show that developmental Pb(2+) exposure reproduces specific neuropathology and functional dopamine system changes present in SZ. We propose that exposure to environmental toxins that produce NMDAR hypofunction during critical periods of brain development may contribute significantly to the etiology of mental disorders.
    Translational Psychiatry 03/2015; 5(3):e522. DOI:10.1038/tp.2014.147 · 4.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imaging the brain distribution of translocator protein (TSPO), a putative biomarker for glial cell activation and neuroinflammation, may inform management of individuals infected with HIV by uncovering regional abnormalities related to neurocognitive deficits and enable non-invasive therapeutic monitoring. Using the second-generation TSPO-targeted radiotracer, [(11)C]DPA-713, we conducted a positron emission tomography (PET) study to compare the brains of 12 healthy human subjects to those of 23 individuals with HIV who were effectively treated with combination antiretroviral therapy (cART). Compared to PET data from age-matched healthy control subjects, [(11)C]DPA-713 PET of individuals infected with HIV demonstrated significantly higher volume-of-distribution (VT) ratios in white matter, cingulate cortex, and supramarginal gyrus, relative to overall gray matter VT, suggesting localized glial cell activation in susceptible regions. Regional TSPO abnormalities were evident within a sub-cohort of neuro-asymptomatic HIV subjects, and an increase in the VT ratio within frontal cortex was specifically linked to individuals affected with HIV-associated dementia. These findings were enabled by employing a gray matter normalization approach for PET data quantification, which improved test-retest reproducibility, intra-class correlation within the healthy control cohort, and sensitivity of uncovering abnormal regional findings.
    Journal of NeuroVirology 02/2014; DOI:10.1007/s13365-014-0239-5 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The long-term consequences of chronic manganese (Mn) exposure on neurological health is a topic of great concern to occupationally-exposed workers and in populations exposed to moderate levels of Mn. We have performed a comprehensive assessment of Mn effects on dopamine (DA) synapse markers using positron emission tomography (PET) in the non-human primate brain. Young male Cynomolgus macaques were given weekly i.v. injections of 3.3-5.0 mg Mn/kg (n = 4), 5.0-6.7 mg Mn/kg (n = 5), or 8.3-10.0 mg Mn/kg (n = 3) for 7-59 weeks and received PET studies of various DA synapse markers before (baseline) and at one or two time points during the course of Mn exposure. We report that amphetamine-induced DA release measured by PET is markedly impaired in the striatum of Mn-exposed animals. The effect of Mn on DA release was present in the absence of changes in markers of dopamine terminal integrity determined in post-mortem brain tissue from the same animals. These findings provide compelling evidence that the effects of Mn on DA synapses in the striatum are mediated by inhibition of DA neurotransmission and are responsible for the motor deficits documented in these animals.
    Journal of Neurochemistry 10/2008; 107(5):1236-47. DOI:10.1111/j.1471-4159.2008.05695.x · 4.24 Impact Factor
  • Source
    Jennifer L McGlothan, Marzena Karcz-Kubicha, Tomás R Guilarte
    [Show abstract] [Hide abstract]
    ABSTRACT: Pavlovian fear conditioning is a model of emotional learning in which a neutral stimulus such as a tone is paired with an aversive stimulus such as a foot shock. Presentation of a tone with a foot shock in a context (test box) elicits a freezing response representative of stereotypic fear behavior. After conditioning has occurred, presentation of the context (test box) or tone in the absence of the unconditioned stimulus (shock) causes extinction of the fear response. Rats chronically exposed to environmentally relevant levels of lead (Pb(2+)) and controls were tested in a fear-conditioning (FC) paradigm at 50 days of age (PN50). Littermates to FC rats received an immediate shock (IS) when placed in the test box with no tone. Blood Pb(2+) levels in control and Pb(2+)-exposed animals were (mean+/-S.E.M.): 0.76+/-0.11 (n=15) and 25.8+/-1.28microg/dL (n=14). Freezing behavior was recorded during acquisition (day of training) or during 4 consecutive extinction days. Control and Pb(2+)-exposed FC rats exhibited the same level of freezing time on the acquisition day. No freezing behavior occurred in IS rats regardless of treatment. Presentation of context 24h later produced a freezing response on both control and Pb(2+)-exposed FC rats but not in IS rats. When tested in the extinction phase, Pb(2+)-exposed FC rats exhibited deficits in extinction compared to control FC rats. That is, when presented with context on 4 consecutive days after acquisition of the fear response, Pb(2+)-exposed FC rats exhibited a greater freezing response than control FC rats. These findings indicate that chronic Pb(2+) exposure produces a deficit in extinction learning and the animals remain more fearful than controls.
    NeuroToxicology 08/2008; 29(6):1127-30. DOI:10.1016/j.neuro.2008.06.010 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used positron emission tomography (PET) to measure the earliest change in dopaminergic synapses and glial cell markers in a chronic, low-dose MPTP non-human primate model of Parkinson's disease (PD). In vivo levels of dopamine transporters (DAT), vesicular monoamine transporter-type 2 (VMAT2), amphetamine-induced dopamine release (AMPH-DAR), D2-dopamine receptors (D2R) and translocator protein 18 kDa (TSPO) were measured longitudinally in the striatum of MPTP-treated animals. We report an early (2 months) decrease (46%) of striatal VMAT2 in asymptomatic MPTP animals that preceded changes in DAT, D2R, and AMPH-DAR and was associated with increased TSPO levels indicative of a glial response. Subsequent PET studies showed progressive loss of all pre-synaptic dopamine markers in the striatum with expression of parkinsonism. However, glial cell activation did not track disease progression. These findings indicate that decreased VMAT2 is a key pathogenic event that precedes nigrostriatal dopamine neuron degeneration. The loss of VMAT2 may result from an association with alpha-synuclein aggregation induced by oxidative stress. Disruption of dopamine sequestration by reducing VMAT2 is an early pathogenic event in the dopamine neuron degeneration that occurs in the MPTP non-human primate model of PD. Genetic or environmental factors that decrease VMAT2 function may be important determinants of PD.
    Journal of Neurochemistry 05/2008; 105(1):78-90. DOI:10.1111/j.1471-4159.2007.05108.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental evidence is beginning to converge on an important role for dysregulation of glutamate carboxypeptidase II (GCPII) in schizophrenia. The goal of this study was to determine GCPII levels in postmortem brain specimens of patients with schizophrenia, bipolar disorder or unipolar depression and age-matched control subjects. We used N-[N-(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-[(125)I]iodo-l-tyrosine ([(125)I]DCIT), a high-affinity radioligand for GCPII, to probe for GCPII expression in prefrontal cortex (PFC) and mesial temporal lobe, two brain regions implicated in the pathophysiology of schizophrenia. We found that GCPII levels measured by [(125)I]DCIT quantitative autoradiography were significantly lower in the PFC and entorhinal cortex in patients with schizophrenia compared to age-matched controls. Patients with bipolar disorder also expressed significantly lower GCPII levels in PFC than controls. The decrease in [(125)I]DCIT binding in schizophrenia and bipolar disorder remained significant after adjusting for drug abuse. A significant difference in GCPII levels was also observed between schizophrenia relative to bipolar disorder and depressed subjects in the hippocampus-stratum lucidum and between schizophrenia and bipolar in the CA2 region of the hippocampus, with bipolar and depressed subjects expressing higher levels of GCPII than subjects with schizophrenia. These differences in hippocampal GCPII levels may implicate differences in the etiologies of these mental disorders. In summary, this study demonstrates a regional dysregulation of GCPII expression in the brain of patients with schizophrenia and other psychiatric disorders and supports a hypoglutamatergic state of the former illness. GCPII may represent a viable therapeutic target for intervention in psychiatric disease.
    Schizophrenia Research 03/2008; 99(1-3):324-32. DOI:10.1016/j.schres.2007.11.013 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that movement abnormalities induced by chronic manganese (Mn) exposure are mediated by dysfunction of the nigrostriatal dopamine system in the non-human primate striatum. Motor function and general activity of animals was monitored in parallel with chronic exposure to Mn and Positron Emission Tomography (PET) studies of in vivo dopamine release, dopamine transporters and dopamine receptors in the striatum. Analysis of metal concentrations in whole blood and brain was obtained and post-mortem analysis of brain tissue was used to confirm the in vivo PET findings. Chronic Mn exposure resulted in subtle motor function deficits that were associated with a marked decrease of in vivo dopamine release in the absence of a change in markers of dopamine (DA) terminal integrity or dopamine receptors in the striatum. These alterations in nigrostriatal DA system function were observed at blood Mn concentrations within the upper range of environmental, medical and occupational exposures in humans. These findings show that Mn-exposed non-human primates that exhibit subtle motor function deficits have an apparently intact but dysfunctional nigrostriatal DA system and provide a novel mechanism of Mn effects on the dopaminergic system.
    Experimental Neurology 01/2007; 202(2):381-90. DOI:10.1016/j.expneurol.2006.06.015 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to high levels of manganese (Mn) is known to produce a complex neurological syndrome with psychiatric disturbances, cognitive impairment, and parkinsonian features. However, the neurobiological basis of chronic low-level Mn exposure is not well defined. We now provide evidence that exposure to levels of Mn that results in blood Mn concentrations in the upper range of environmental and occupational exposures and in certain medical conditions produces widespread Mn accumulation in the nonhuman primate brain as visualized by T1-weighted magnetic resonance imaging. Analysis of regional brain Mn distribution using a "pallidal index equivalent" indicates that this approach is not sensitive to changing levels of brain Mn measured in postmortem tissue. Evaluation of longitudinal 1H-magnetic resonance spectroscopy data revealed a significant decrease (p = 0.028) in the N-acetylaspartate (NAA)/creatine (Cr) ratio in the parietal cortex and a near significant decrease (p = 0.055) in frontal white matter (WM) at the end of the Mn exposure period relative to baseline. Choline/Cr or myo-Inositol/Cr ratios did not change at any time during Mn exposure. This indicates that the changes in the NAA/Cr ratio in the parietal cortex are not due to changes in Cr but in NAA levels. In summary, these findings suggest that during chronic Mn exposure a significant amount of the metal accumulates not only in the basal ganglia but also in WM and in cortical structures where it is likely to produce toxic effects. This is supported by a significantly decreased, in the parietal cortex, NAA/Cr ratio suggestive of ongoing neuronal degeneration or dysfunction.
    Toxicological Sciences 01/2007; 94(2):351-8. DOI:10.1093/toxsci/kfl106 · 4.48 Impact Factor
  • Christopher D Toscano, Jennifer L McGlothan, Tomás R Guilarte
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental enrichment (EE) is known to enhance the cognitive ability of rodents. To translate EE to the human condition, it is important to understand the parameters of its efficacy. In this study, we examine if the cognitive enhancement associated with EE is permanent and whether a developmental window exists for its efficacy. Rats were housed in continuous isolation (ISO), continuous enrichment (EE), enrichment from postnatal day (PN) 21-50, and then isolation from PN50-79 (PM), or isolation from PN21-50 and then enriched from PN50-79 (CW). Spatial learning ability and basal expression of the immediate-early genes zif268 and Arc as well as the NR1 subunit of the NMDA receptor were assessed. Rats housed in an enriched environment at the time of testing (EE and CW) performed significantly better in the spatial learning task than rats housed in an isolated environment at the time of testing (ISO and PM). Enhanced performance in the spatial learning task was associated with a higher expression of zif268 only in the CA3/CA4 region of the hippocampus. Our study further defines parameters that make environmental enrichment effective in enhancing learning performance and the findings may be helpful in the translation of this intervention to the human condition.
    Experimental Neurology 08/2006; 200(1):209-15. DOI:10.1016/j.expneurol.2006.02.006 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We used positron emission tomography (PET) to measure non-invasively the effect of acute systemic administration to manganese sulfate (MnSO4) on dopamine transporter (DAT) levels in the living non-human primate brain. Baboons received [11C]-WIN 35,428 PET scans to measure DAT levels before and after acute MnSO4 administration. In one animal, we observed a 46% increase in DAT binding potential (BP), a measure of DAT binding site availability, 1 week after Mn administration. DAT levels returned to baseline values at 4 months and remained constant at 10 months after treatment. A subsequent single MnSO4 injection to the same animal also resulted in a 57% increase in DAT-BP, 2 days after administration. In a second animal, a 76% increase in DAT-BP relative to baseline was observed at 3 days after Mn injection. In this animal, the DAT-BP returned to baseline levels after 1 month. Using in vitro receptor binding assays, we found that Mn inhibits [3H]-WIN 35,428 binding to rat striatal DAT with an inhibitory constant (Ki) of 2.0+/-0.3mM (n=4). Saturation isotherms and Scatchard analysis of [3H]-WIN 35,428 binding to rat striatal DAT showed a significant decrease (30%, p<0.001) in the maximal number of binding sites (Bmax) in the presence of 2mM MnSO4. No significant effect of Mn was found on binding affinity (Kd). We also found that Mn inhibits [3H]-dopamine uptake with an IC50 of 11.4+/-1.5mM (n=4). Kinetic studies and Lineweaver-Burk analysis showed a significant decrease (40%, p<0.001) in the maximal velocity of uptake (Vmax) with 5mM MnSO4. No significant effect of Mn was found on Michaelis-Menten constant (Km). These in vitro findings suggest that the increase in DAT levels in vivo following acute Mn administration may be a compensatory response to its inhibitory action on DAT. These findings provide helpful insights on potential mechanisms of Mn-induced neurotoxicity and indicate that the DAT in the striatum is a target for Mn in the brain.
    NeuroToxicology 03/2006; 27(2):229-36. DOI:10.1016/j.neuro.2005.10.008 · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to visualize quantitatively glutamate carboxypeptidase II (GCPII) levels in vivo could advance our understanding of its function in health and disease. In the current study, we synthesized and evaluated a radiolabeled (iodine-125) analog of N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-S-3-iodo-L-tyrosine (DCIT), a potent antagonist of GCPII activity. We examined the regional distribution of [125I]DCIT binding in the rodent brain using quantitative autoradiography in order to confirm the validity of this radioligand as a marker of GCPII in the brain. The ultimate goal is to develop an imaging agent for assessing GCPII levels in the living brain. The specific binding of [125I]DCIT to rat brain followed a regional distribution consistent with previous studies describing regional brain GCPII gene expression and activity. We found a modest rostrocaudal gradient in which specific binding of [125I]DCIT to GCPII was lowest in cortical regions, with increasing levels of binding in midbrain structures and high levels of binding in hindbrain and brainstem. Autoradiography of [125I]DCIT in GCPII knockout and wild type mouse brain showed a gene-dose dependency confirming the selectivity of this radioligand for GCPII. We propose that [125I]DCIT is a selective radioligand that can be used to quantify brain GCPII levels in vitro using quantitative autoradiography.
    Neuroscience Letters 11/2005; 387(3):141-4. DOI:10.1016/j.neulet.2005.06.015 · 2.06 Impact Factor
  • Christopher D Toscano, Jennifer L McGlothan, Tomás R Guilarte
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the effect of lead (Pb(2+)) exposure during development on cyclic-AMP response element binding protein (CREB) expression and phosphorylation in cortical and hippocampal nuclear extracts at postnatal (PN) days 7, 14, 21 and 50. We also examined the binding of CREB family proteins to the cyclic-AMP response element (CRE) using a novel filter-binding assay that provides a quantitative measure of binding kinetics. In the hippocampus and cerebral cortex of control rats, CREB and phospho-CREB (pCREB; serine-133) expression is highest at PN7 and decreases steadily until PN50. Developmental Pb(2+) exposure does not affect total CREB levels but decreases pCREB levels at PN14 and PN50 in the cortex and at PN50 in the hippocampus. Using the filter-binding assay, we measured a 30% decrease in B(max) and 38% decrease in the Kd of CREB family proteins for the CRE in PN50 hippocampal nuclear fractions prepared from Pb(2+)-exposed rats. A similar, but nonsignificant, trend is observed in the cortex of PN50 lead-exposed rats. In addition, a 70% increase in the B(max) was observed in the cortex of PN14 lead-exposed rats without a significant change in the Kd. These disruptions in pCREB expression and binding activity of CREB family members during the ontogeny of the rat brain begin to decipher intracellular mechanisms of Pb(2+) neurotoxicity.
    Developmental Brain Research 12/2003; 145(2):219-28. DOI:10.1016/j.devbrainres.2003.08.004 · 1.78 Impact Factor
  • Tomás R Guilarte, Jennifer L McGlothan
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that exposure to environmentally relevant levels of Pb(2+) during brain development decreases the expression of N-methyl-D-aspartate receptor (NMDAR) subunit 1 (NR1) and NR2A genes in the hippocampus of young adult rats and was associated with deficits in hippocampal LTP and spatial learning [Neuroscience 99 (2000) 233-242]. In the present study, we demonstrate that the lower levels of NR1 subunit mRNA expressed in the Pb(2+)-exposed hippocampus are principally due to decreased levels of the NR1-4 and NR1-2 splice variants. These changes were present in the absence of changes in GluR1, PSD-95 and alphaCaMKII gene expression. A unique characteristic of these splice variants is that they lack the C1 cassette. Further, these splice variants have been shown to impart the highest cell surface expression, PKC potentiation and calcium kinetics to NMDAR complexes. Our present findings indicate that Pb(2+)-induced changes in NR1 subunit splice variant mRNA expression in the hippocampus may provide a mechanism by which Pb(2+)-exposure can modify NMDAR-mediated calcium signaling and influence the degree of synaptic plasticity.
    Molecular Brain Research 06/2003; 113(1-2):37-43. DOI:10.1016/S0169-328X(03)00083-4 · 2.00 Impact Factor
  • T R Guilarte, M K Nihei, J L McGlothan, A.S Howard
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the effects of methamphetamine (METH) on monoaminergic (i.e. dopamine and serotonin) axonal markers and glial cell activation in the rat brain. Our findings indicate that the loss of dopamine transporters (DAT), serotonin transporters (5-HTT), vesicular monoamine transporter type-2 (VMAT-2) and glial cell activation induced by METH in the striatum and in the central gray are consistent with a degenerative process. Our novel finding of METH effects on monoaminergic neurons in the central gray may have important implications on METH-induced hyperthermia. In other brain regions examined, DAT and 5-HTT deficits after METH administration were present in the absence of lasting changes in VMAT-2 levels or glial cell activation. Brain regions exhibiting protracted deficits in DAT and/or 5-HTT and VMAT-2 levels also expressed increased levels of [(3)H]-R-PK11195 binding to peripheral benzodiazepine receptors, a quantitative marker of glial cell activation. Immunohistochemical assessment of microglia and astrocytes confirmed the PBR results. Microglia activation was more pronounced than astrocytosis in affected regions in most METH-exposed brains with the exception of a small number of rats that were most severely affected by METH based on loss of body weight. In these rats, both microglia and astrocytes were highly activated and expressed a distinct regional pattern suggestive of widespread brain injury. The reason for the pattern of glial cell activation in this group of rats is not currently known but it may be associated with METH-induced hyperthermia. In summary, our findings suggest two neurotoxic endpoints in the brain of METH-exposed animals. Brain regions exhibiting DAT and 5-HTT deficits that co-localize with decreased VMAT-2 levels and glial cell activation may represent monoaminergic terminal degeneration. However, the DAT and 5-HTT deficits in brain regions lacking a deficit in VMAT-2 and glial cell activation may reflect drug-induced modulation of these plasma membrane proteins.
    Neuroscience 02/2003; 122(2):499-513. DOI:10.1016/S0306-4522(03)00476-7 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-term deficits in cognitive function are the principal effects of lead (Pb2+) exposure in children and can be modeled in experimental animals. Current therapeutic approaches in the treatment of childhood Pb2+ intoxication are not effective in reversing learning deficits once they have occurred. We report that environmental enrichment reverses long-term deficits in spatial learning produced by developmental Pb2+ exposure in rats. Enhanced learning performance of Pb2+-exposed animals reared in an enriched environment was associated with recovery of deficits in N-methyl-D-aspartate receptor subunit 1 (NR1) mRNA and induction of brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. The effect of environmental enrichment on NR1 and BDNF gene expression was specific to Pb2+-exposed animals and was present in the absence of changes in the NR2B subunit of the N-methyl-D-aspartate receptor, GluR1, alpha CamKII, or PSD-95 gene expression measured in the same animals. Our findings demonstrate that the learning impairments and NR1 subunit mRNA deficits resulting from developmental Pb2+ exposure are reversible if the animals are provided with an enriched environment even after the exposure has occurred. We propose environmental enrichment as a basis for the treatment of childhood Pb2+ intoxication.
    Annals of Neurology 02/2003; 53(1):50-6. DOI:10.1002/ana.10399 · 11.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we show that chronic exposure to low levels of lead (Pb(2+)) during development alters the type of N-methyl-D-aspartate receptor (NMDAR) expressed in the developing and young adult rat brain. Ifenprodil inhibition of [3H]MK-801 binding to the NMDAR channel in cortical and hippocampal neuronal membranes expressed high and low affinity components. Previous studies have shown that the high affinity component is associated with NR1/NR2B receptor complexes while the low affinity component is associated with the appearance and insertion of the NR2A subunit to NMDAR complexes. Pb(2+)-exposed rats express a greater number of [3H]MK-801 binding sites associated with the high affinity and low affinity components of ifenprodil inhibition. Further, [3H]ifenprodil saturation isotherms and Scatchard analysis in cortical and hippocampal membranes showed a higher number of binding sites (B(max)) with no change in binding affinity (K(d)) in Pb(2+)-exposed animals relative to controls. Quantitative [3H]MK-801 autoradiography in response to glutamate and glycine provided evidence that NMDAR complexes in Pb(2+)-exposed rat brain were maximally activated in situ. Higher levels of ifenprodil-sensitive binding sites and increased sensitivity to agonists are properties characteristic of NR1/NR2B recombinant receptors. Thus, our results strongly suggest that a greater proportion of the total number of NMDAR are NR1/NR2B receptors in the Pb(2+)-exposed rat brain. This Pb(2+)-induced change in NMDAR subtypes in the rat brain was associated with reduced CREB phosphorylation in cortical and hippocampal nuclear extracts. These findings demonstrate that chronic exposure to environmentally relevant levels of Pb(2+) altered the subunit composition of NMDAR complexes with subsequent effects on calcium-sensitive signaling pathways involved in CREB phosphorylation.
    Developmental Brain Research 01/2003; 139(2):217-26. DOI:10.1016/S0165-3806(02)00569-2 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the effect of chronic exposure to lead (Pb(2+)) on protein kinase C (PKC) in 50-day-old rat hippocampus. Cytosolic and membrane fractions of hippocampus from Pb(2+)-exposed rats showed reduced expression of PKC gamma protein. In contrast, a significant elevation of PKC gamma mRNA was observed in pyramidal and dentate granule cell layers. Protein expression of alpha, beta I, beta II and epsilon isoenzymes were unchanged in Pb(2+)-exposed rats, as was [(3)H]phorbol 12,13 dibutyrate (PDBu) binding in tissue slices. Differences were not observed in Ca(2+)-dependent or -independent PKC activity, or in PKC-specific back-phosphorylation of hippocampal homogenates from Pb(2+)-exposed rats. Reduced subcellular levels of PKC gamma in Pb(2+)-exposed rats suggest that signal transduction in the hippocampus may be selectively altered and may be important in manifesting Pb(2+)-induced impairments of synaptic plasticity, learning and memory.
    Neuroscience Letters 03/2001; 298(3):212-6. DOI:10.1016/S0304-3940(00)01741-9 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study demonstrates that impairments of spatial learning and hippocampal long-term potentiation in rats chronically exposed to lead are associated with changes in gene and protein expression of N-methyl-D-aspartate receptor subunits. Rats exposed to 750 and 1500 ppm lead acetate were found to exhibit deficits in acquisition of a water maze spatial learning task. Furthermore, lead-exposed rats show dose-dependent reductions in the maintenance of in vivo hippocampal long-term potentiation induced in entorhinal cortex-dentate gyrus synapses. We found an unexpected, but significant (P<0.05), correlation between spatial learning and long-term potentiation when control and lead-exposed rats were analysed as a single, combined population. Dentate gyrus NR1 subunit messenger RNA was reduced 18% and 28% by exposure to 750 and 1500 ppm lead acetate, respectively. NR2A subunit messenger RNA was reduced 18% but only in the dentate gyrus of rats exposed to 1500 ppm lead acetate. No significant changes in dentate NR2B messenger RNA expression were measured in either of the lead-exposed groups. NR1 subunit protein was reduced 24% and 58% in hippocampal homogenates from rats exposed to 750 and 1500 ppm lead acetate. In contrast, no changes in NR2A or NR2B subunit protein were observed in the same hippocampal homogenates. These data show that reductions of specific N-methyl-D-aspartate receptor subunits are associated with deficits of both hippocampal long-term potentiation and spatial learning, induced in rats by chronic exposure to environmentally relevant levels of lead. These findings strongly suggest that the effects of lead on N-methyl-D-aspartate receptors may be the mechanistic basis for lead-induced deficits in cognitive function.
    Neuroscience 09/2000; 99(2):233-42. DOI:10.1016/S0306-4522(00)00192-5 · 3.33 Impact Factor
  • Tomás R. Guilarte, Jennifer L. McGlothan, Michelle K. Nihei
    [Show abstract] [Hide abstract]
    ABSTRACT: N-methyl-D-aspartate receptors (NMDAR) play an important role in synaptic plasticity and brain development. We have previously shown that NR1-pan mRNA is significantly increased in the hippocampus of rats chronically exposed to low levels of lead (Pb(2+)) during development [T.R. Guilarte, J.L. McGlothan, Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure, Brain Res., 790 (1998) 98-107]. It is not known whether this Pb(2+)-induced increase in NR1-pan mRNA is associated with changes in specific splice isoforms. To study this effect, we used in situ hybridization of oligonucleotides to probe for the NR1-a, NR1-b, NR1-1, NR1-2, and NR1-4 isoforms which are most abundantly expressed in the rat hippocampus. Developmental exposure to increasing levels of Pb(2+) resulted in significant increases in NR1-a mRNA throughout the pyramidal and granule cell layers of the rat hippocampus at postnatal day 14 (PN14). NR1-b mRNA was increased in the pyramidal cell layer of Pb(2+)-exposed rats at PN21. Splicing of the C-terminus cassettes was also regulated by developmental exposure to Pb(2+). NR1-2 mRNA was increased in CA4 pyramidal cells and in dentate granule cells of PN21 Pb(2+)-exposed rats. Notably, expression of NR1-4 mRNA in CA3 pyramidal cells was increased in Pb(2+)-exposed rats at PN14 and decreased at PN21. No significant Pb(2+) effect was measured for NR1-1 mRNA expression. These data indicate that alternative splicing of the NR1 gene shows selective anatomical and temporal regulation by Pb(2+) in the developing rat hippocampus. This study provides further support to the hypothesis that NMDARs are important targets for Pb(2+)-induced neurotoxicity.
    Molecular Brain Research 04/2000; 76(2):299-305. DOI:10.1016/S0169-328X(00)00010-3 · 2.00 Impact Factor
  • Tomás R. Guilarte, Jennifer L. McGlothan
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-methyl-D-aspartate (NMDA) receptor has shown to play an important role in the cognitive deficits associated with developmental lead (Pb) exposure. In this study, we examined the effects of low-level Pb exposure on NMDA receptor subunit gene expression in the developing rat brain. The pattern of NR1, NR2A, NR2B, and NR2C subunit mRNA in situ hybridization was consistent with previous studies. Brain levels of NR1 and NR2A mRNAs were lowest shortly after birth, increasing to reach peak levels by 14 or 21 days of age and subsequently decreasing at 28 days of age. NR2B mRNA levels were highest during early development and decreased as the animals aged. NR2C subunit mRNA was restricted to the cerebellum and a signal was not detectable until the second week of life. Lead exposure resulted in significant and opposite effects in NR1 and NR2A subunit mRNA expression with no changes in NR2B or NR2C subunit expression. The Pb-induced changes in NR1 and NR2A subunit mRNA were mainly present in the hippocampus. Hippocampal NR1 mRNA levels were significantly increased in the CA1 (15.3%) and CA4 (26.8%) pyramidal cells from 14-day-old Pb-exposed rats. At 21 days of age, only the NR1 mRNA at the CA4 subfield remained significantly elevated (10.3%). Lead exposure caused reductions of NR2A mRNA levels (11.9-19.3%) in the pyramidal and granule cell layers of the hippocampus at 14 and 21 days of age. NR1 mRNA levels were also significantly increased (14.0%) in the cerebellum of 28-day-old rats with no change in NR2A mRNA at any age. No significant changes in subunit mRNA levels were present in cortical or subcortical regions at any age. The Pb-induced changes in hippocampal NMDA receptor subunit mRNA expression measured in the present study may lead to modifications in receptor levels or subtypes and alter the development of defined neuronal connections which require NMDA receptor activation.
    Brain Research 05/1998; 790(1-2):98-107. DOI:10.1016/S0006-8993(98)00054-7 · 2.83 Impact Factor

Publication Stats

910 Citations
75.53 Total Impact Points

Institutions

  • 2015
    • Columbia University
      • Department of Environmental Health Sciences
      New York, New York, United States
  • 2007–2014
    • Johns Hopkins Medicine
      • • Department of Psychiatry and Behavioral Sciences
      • • Department of Neuroscience
      Baltimore, Maryland, United States
  • 2003–2008
    • Johns Hopkins Bloomberg School of Public Health
      • Department of Environmental Health Sciences
      Baltimore, Maryland, United States
  • 1997–2003
    • Johns Hopkins University
      • Department of Environmental Health Sciences
      Baltimore, Maryland, United States