Dennis W Trent

Utah State University, Logan, OH, United States

Are you Dennis W Trent?

Claim your profile

Publications (11)86.83 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Serial passaging of yellow fever virus 17D in Vero cells was employed to derive seed material for a novel inactivated vaccine, XRX-001. Two independent passaging series identified a novel lysine to arginine mutation at amino acid 160 of the envelope protein, a surface-exposed residue in structural domain I. A third passage series resulted in an isoleucine to methionine mutation at residue 113 of the NS4B protein, a central membrane spanning region of the protein which has previously been associated with Vero cell adaptation of other mosquito-borne flaviviruses. These studies confirm that flavivirus adaptation to growth in Vero cells can be mediated by structural or non-structural protein mutations.
    Virus Research 04/2013; · 2.75 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Live, attenuated yellow fever (YF) 17D vaccine is highly efficacious but causes rare, serious adverse events resulting from active replication in the host and direct viral injury to vital organs. We recently reported development of a potentially safer β-propiolactone-inactivated whole virion YF vaccine (XRX-001), which was highly immunogenic in mice, hamsters, monkeys, and humans [10,11]. To characterize the protective efficacy of neutralizing antibodies stimulated by the inactivated vaccine, graded doses of serum from hamsters immunized with inactivated XRX-001 or live 17D vaccine were transferred to hamsters by the intraperitoneal (IP) route 24h prior to virulent, viscerotropic YF virus challenge. Neutralizing antibody (PRNT(50)) titers were determined in the sera of treated animals 4h before challenge and 4 and 21 days after challenge. Neutralizing antibodies were shown to mediate protection. Animals having 50% plaque reduction neutralization test (PRNT(50)) titers of ≥40 4h before challenge were completely protected from disease as evidenced by viremia, liver enzyme elevation, and protection against illness (weight change) and death. Passive titers of 10-20 were partially protective. Immunization with the XRX-001 vaccine stimulated YF neutralizing antibodies that were equally effective (based on dose response) as antibodies stimulated by live 17D vaccine. The results will be useful in defining the level of seroprotection in clinical studies of new yellow fever vaccines.
    Vaccine 06/2011; 29(35):6008-16. · 3.77 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed. In a double-blind, placebo-controlled, dose-escalation, phase 1 study of 60 healthy subjects between 18 and 49 years of age, we investigated the safety and immunogenicity of XRX-001 purified whole-virus, β-propiolactone-inactivated yellow fever vaccine produced in Vero cell cultures and adsorbed to aluminum hydroxide (alum) adjuvant. On two visits 21 days apart, subjects received intramuscular injections of vaccine that contained 0.48 μg or 4.8 μg of antigen. Levels of neutralizing antibodies were measured at baseline and on days 21, 31, and 42. The vaccine induced the development of neutralizing antibodies in 100% of subjects receiving 4.8 μg of antigen in each injection and in 88% of subjects receiving 0.48 μg of antigen in each injection. Antibody levels increased by day 10 after the second injection, at which time levels were significantly higher with the 4.8-μg formulation than with the 0.48-μg formulation (geometric mean titer, 146 vs. 39; P<0.001). Three adverse events occurred at a higher incidence in the two vaccine groups than in the placebo group: mild pain, tenderness, and (much less frequently) itching at the injection site. One case of urticaria was observed on day 3 after the second dose of 4.8 μg of vaccine. A two-dose regimen of the XRX-001 vaccine, containing inactivated yellow fever antigen with an alum adjuvant, induced neutralizing antibodies in a high percentage of subjects. XRX-001 has the potential to be a safer alternative to live attenuated 17D vaccine. (Funded by Xcellerex; ClinicalTrials.gov number, NCT00995865.).
    New England Journal of Medicine 04/2011; 364(14):1326-33. · 51.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (P<0.001, ANOVA)]. Hamsters given a single dose or two doses of inactivated vaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated.
    Vaccine 03/2010; 28(22):3827-40. · 3.77 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Introduction of the polymerase chain reaction (PCR) technique as a rapid and sensitive method for amplification of DNA has resulted in development of new specific nucleic acid-based techniques for clinical diagnosis of infections (1). Improvements in nucleic acid amplification by PCR, and development of sensitive nonisotopic technologies for detection of amplified viral genes have facilitated the introduction of molecular methods into the diagnostic laboratory. The availability of simple and well-characterized protocols, cominercial reagents of high quality, improved equipment for performing PCR reactions, and nonisotopic methods for detection of amplicons has stimulated development of PCR-based tests for detection of both DNA and RNA viral nucleic acids in clinical samples (1).
    01/2008: pages 51-61;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: St. Louis encephalitis (SLE) and West Nile (WN) flaviviruses are genetically closely related and cocirculate in the United States. Virus neutralization tests provide the most specific means for serodiagnosis of infections with these viruses. However, use of wild-type SLE and WN viral strains for laboratory testing is constrained by the biocontainment requirements. We constructed two highly attenuated yellow fever (YF) virus chimeras that contain the premembrane-envelope (prM-E) protein genes from the virulent MSI-7 (isolated in the United States) or the naturally attenuated CorAn9124 (Argentina) SLE strains. The YF/SLE (CorAn version) virus and the previously constructed YF/WN chimera were shown to specifically distinguish between confirmed human SLE and WN cases in a virus neutralization test using patient sera. These chimeras have the potential for use as diagnostic reagents and vaccines against SLE and WN.
    The American journal of tropical medicine and hygiene 12/2004; 71(5):639-45. · 2.53 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The availability of ChimeriVax vaccine technology for delivery of flavivirus protective antigens at the time West Nile (WN) virus was first detected in North America in 1999 contributed to the rapid development of the vaccine candidate against WN virus described here. ChimeriVax-Japanese encephalitis (JE), the first live- attenuated vaccine developed with this technology has successfully undergone phase I and II clinical trials. The ChimeriVax technology utilizes yellow fever virus (YF) 17D vaccine strain capsid and nonstructural genes to deliver the envelope gene of other flaviviruses as live-attenuated chimeric viruses. Amino acid sequence homology between the envelope protein (E) of JE and WN viruses facilitated targeting attenuating mutation sites to develop the WN vaccine. Here we discuss preclinical studies with the ChimeriVax-WN virus in mice and macaques. ChimeriVax-WN virus vaccine is less neurovirulent than the commercial YF 17D vaccine in mice and nonhuman primates. Attenuation of the virus is determined by the chimeric nature of the construct containing attenuating mutations in the YF 17D virus backbone and three point mutations introduced to alter residues 107, 316, and 440 in the WN virus E protein gene. The safety, immunogenicity, and efficacy of the ChimeriVax-WN(02) vaccine in the macaque model indicate the vaccine candidate is expected to be safe and immunogenic for humans.
    Journal of Virology 12/2004; 78(22):12497-507. · 5.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The ability of antisera raised against a candidate Japanese encephalitis virus (JEV) vaccine, ChimeriVax-JE, and the currently licensed vaccine, JE-VAX, to protect against strains of JEV representing the four major genotypes was assessed. Neutralization assays and passive protection studies in mice showed that greatest protection was provided against strains of genotypes II and III, although some protection was also afforded against genotypes I and IV strains. ChimeriVax-JE stimulated protection that was comparable or superior to the JE-VAX control.
    Vaccine 10/2004; 22(27-28):3722-6. · 3.49 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To construct chimeric YF/DEN viruses (ChimeriVax-DEN), the premembrane (prM) and envelope (E) genes of yellow fever (YF) 17D virus were replaced with those of each wild-type (WT) dengue (DEN) virus representing serotypes 1 to 4. ChimeriVax-DEN1-4 vaccine viruses were prepared by electroporation of Vero cells with RNA transcripts prepared from viral cDNA (F. Guirakhoo, J. Arroyo, K. V. Pugachev, C. Miller, Z.-X. Zhang, R. Weltzin, K. Georgakopoulos, J. Catalan, S. Ocran, K. Soike, M. Ratteree, and T. P. Monath, J. Virol. 75:7290-7304, 2001; F. Guirakhoo, K. Pugachev, J. Arroyo, C. Miller, Z.-X. Zhang, R. Weltzin, K. Georgakopoulos, J. Catalan, S. Ocran, K. Draper, and T. P. Monath, Virology 298:146-159, 2002). Progeny viruses were subjected to three rounds of plaque purifications to produce the Pre-Master Seed viruses at passage 7 (P7). Three further passages were carried out using U.S. current Good Manufacturing Practices (cGMP) to produce the Vaccine Lot (P10) viruses. Preclinical studies demonstrated that the vaccine candidates are replication competent and genetically stable and do not become more neurovirulent upon 20 passages in Vero cells. The safety of a tetravalent vaccine was determined and compared to that of YF-VAX in a formal monkey neurovirulence test. Brain lesions produced by the tetravalent ChimeriVax-DEN vaccine were significantly less severe than those observed with YF-VAX. The immunogenicity and protective efficacy of four different tetravalent formulations were evaluated in cynomolgus monkeys following a single-dose subcutaneous vaccination followed by a virulent virus challenge 6 months later. All monkeys developed low levels of viremia postimmunization, and all the monkeys that had received equal concentrations of either a high-dose (5,5,5,5) or a low-dose (3,3,3,3) formulation seroconverted against all four DEN virus serotypes. Twenty-two (92%) of 24 monkeys were protected as determined by lack of viremia post-challenge. This report is the first to demonstrate the safety of a recombinant DEN virus tetravalent vaccine in a formal neurovirulence test, as well as its protective efficacy in a monkey challenge model.
    Journal of Virology 06/2004; 78(9):4761-75. · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Three consecutive plaque purifications of four chimeric yellow fever virus-dengue virus (ChimeriVax-DEN) vaccine candidates against dengue virus types 1 to 4 were performed. The genome of each candidate was sequenced by the consensus approach after plaque purification and additional passages in cell culture. Our data suggest that the nucleotide sequence error rate for SP6 RNA polymerase used in the in vitro transcription step to initiate virus replication was as high as 1.34 x 10(-4) per copied nucleotide and that the error rate of the yellow fever virus RNA polymerase employed by the chimeras for genome replication in infected cells was as low as 1.9 x 10(-7) to 2.3 x 10(-7). Clustering of beneficial mutations that accumulated after multiple virus passages suggests that the N-terminal part of the prM protein, a specific site in the middle of the E protein, and the NS4B protein may be essential for nucleocapsid-envelope interaction during flavivirus assembly.
    Journal of Virology 02/2004; 78(2):1032-8. · 5.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Yellow fever, dengue, Japanese encephalitis and tick-borne encephalitis viruses are the medically most important members of the Flavivirus genus composed primarily of arboviruses. In this paper, we review the commercially available traditional flavivirus vaccines against yellow fever, Japanese encephalitis, and tick-borne encephalitis, as well as modern approaches to flavivirus vaccines. Formalin inactivation technology has been employed to produce killed vaccines. Flaviviruses have been attenuated by multiple passages in animal tissues and cell cultures to produce empirical live attenuated vaccines. The use of traditional methods is being pursued to develop vaccines against other flavivirus diseases, such as dengue, and to improve existing vaccines, such as for Japanese encephalitis. With the recent development of infectious clones, rational approaches to attenuated flavivirus vaccines have employed the introduction of specific mutations into wild type viruses and chimerisation between different viruses. Novel methods for delivery of live vaccines, such as inoculation of infectious DNA or RNA, have been described. Other approaches, such as the construction of protein subunit, expression vector-based and naked DNA vaccines, have been proposed to create alternate vaccine candidates.
    International Journal for Parasitology 06/2003; 33(5-6):567-82. · 3.64 Impact Factor