Theodore C White

University of Missouri - Kansas City, Kansas City, Missouri, United States

Are you Theodore C White?

Claim your profile

Publications (53)226 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Several human skin diseases and disorders are associated with two groups of fungi, the dermatophytes and Malassezia. Although these skin-related problems are not generally life threatening, they are among the most common diseases and disorders of mankind. These fungi are phylogenetically divergent, with the dermatophytes within the Ascomycota and Malassezia within Basidiomycota. Genome analysis indicates that the adaptations to the skin environment are different in these two groups of fungi. Malassezia are dependent on host lipids and secrete lipases and phospholipases that likely release host fatty acids. The dermatophytes encode multiple enzymes with potential roles in modulating host interactions: polyketide synthases, nonribosomal peptide synthetases, LysM, proteases, kinases, and pseudokinases. These two fungal groups have maximized their interactions with the host using two very different mechanisms.
    Cold Spring Harbor perspectives in medicine. 01/2014; 4(8).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.
    PLoS Genetics 01/2014; 10(1):e1004076. · 8.52 Impact Factor
  • Rebecca Rashid Achterman, Theodore C White
    Current biology: CB 07/2013; 23(13):R551-R552. · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dermatophytes belonging to the Trichophyton and Arthroderma genera cause skin infections in humans and animals. From genome sequencing data, we mined a conserved gene cluster among dermatophytes that are homologous to one that produces an immunosuppressive polyketide in Aspergillus fumigatus. Using a recombination-based cloning strategy in yeast, we constructed fungal heterologous expression vectors that encode the cryptic clusters. When integrated into the model Aspergillus nidulans host, a structurally related compound neosartoricin B was formed, suggesting a possible role of this compound in the pathogenesis of these strains.
    ACS Synthetic Biology 06/2013; · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pdr16p belongs to the family of phosphatidylinositol transfer proteins in yeast. The absence of Pdr16p results in enhanced susceptibility to azole antifungals in Saccharomyces cerevisiae. In the major fungal human pathogen Candida albicans, CaPDR16 is a contributing factor to clinical azole resistance. The current study is aimed at better understanding the function of Pdr16p, especially in relation to azole resistance in S. cerevisiae. We show that deletion of the PDR16 gene increased susceptibility of S. cerevisiae to azole antifungals that are used in clinical medicine and agriculture. Significant differences in the inhibition of the sterol biosynthetic pathway were observed between the pdr16Δ strain and its corresponding wild type (wt) strain when yeast cells were challenged by sub-inhibitory concentrations of the azoles miconazole or fluconazole. The increased susceptibility to azoles, and enhanced changes in sterol biosynthesis upon exposure to azoles of the pdr16Δ strain compared to wt strain is not the result of increased intracellular concentration of azoles in the pdr16Δ cells. We also show that overexpression of PDR17 complements the azole susceptible phenotype of the pdr16Δ strain and corrected the enhanced sterol alterations in the pdr16Δ cells in the presence of azoles. Pdr17p was found previously to be an essential part of a complex required for intermembrane transport of phosphatidylserine at regions of membrane apposition. Based on these observations we propose a hypothesis that Pdr16p assists in shuttling sterols or their intermediates between membranes or alternatively, between sterol biosynthetic enzymes or complexes. This article is protected by copyright. All rights reserved.
    Yeast 04/2013; · 1.96 Impact Factor
  • Source
    Martin Zavrel, Sam J Hoot, Theodore C White
    [Show abstract] [Hide abstract]
    ABSTRACT: Sterol import has been characterized under various conditions in three distinct fungal species, the model organism Saccharomyces cerevisiae and two human fungal pathogens Candida glabrata and Candida albicans, employing cholesterol, the sterol of higher eukaryotes, as well as its fungal equivalent, ergosterol. Import was confirmed by the detection of esterified cholesterol within the cells. Comparing the three fungal species, we observe sterol import under three different conditions. First, as previously well characterized, we observe sterol import under low oxygen levels in S. cerevisiae and C. glabrata, which is dependent on the transcription factor Upc2 and/or its orthologs or paralogs. Second, we observe sterol import under aerobic conditions exclusively in the two pathogenic fungi C. glabrata and C. albicans. Uptake emerges during post-exponential growth phases, is independent of the characterized Upc2-pathway and is slower when compared to the anaerobic uptake in S. cerevisiae and C. glabrata. Third, we observe under normoxic conditions in C. glabrata that Upc2-dependent sterol import can be induced in the presence of fetal bovine serum together with fluconazole. In summary, C. glabrata imports sterols both in aerobic and anaerobic conditions and the limited aerobic uptake can be further stimulated by the presence of serum together with fluconazole. S. cerevisiae imports sterols only in anaerobic conditions, demonstrating aerobic sterol exclusion. Finally, C. albicans imports sterols exclusively aerobically in post-exponential growth phases, independent of Upc2. For the first time, we provide direct evidence of sterol import into the human fungal pathogen C. albicans, which until now was believed to be incapable of active sterol import.
    Eukaryotic Cell 03/2013; · 3.59 Impact Factor
  • Source
    Rebecca Rashid Achterman, Theodore C White
    PLoS Pathogens 03/2012; 8(3):e1002564. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete's foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete's foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host's immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.
    mBio 01/2012; 3(5). · 6.88 Impact Factor
  • Source
    Rebecca Rashid Achterman, Theodore C White
    [Show abstract] [Hide abstract]
    ABSTRACT: Dermatophytes are prevalent causes of cutaneous mycoses and, unlike many other fungal pathogens, are able to cause disease in immunocompetent individuals. They infect keratinized tissue such as skin, hair, and nails, resulting in tinea infections, including ringworm. Little is known about the molecular mechanisms that underlie the ability of these organisms to establish and maintain infection. The recent availability of genome sequence information and improved genetic manipulation have enabled researchers to begin to identify and study the role of virulence factors of dermatophytes. This paper will summarize our current understanding of dermatophyte virulence factors and discuss future directions for identifying and testing virulence factors.
    International Journal of Microbiology 01/2012; 2012:358305.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryptococcosis, caused by the basidiomycetous fungus Cryptococcus neoformans, is responsible for more than 600,000 deaths annually in AIDS patients. Flucytosine is one of the most commonly used antifungal drugs for its treatment, but its resistance and regulatory mechanisms have never been investigated at the genome scale in C. neoformans. In the present study, we performed comparative transcriptome analysis by employing two-component system mutants (tco1Δ and tco2Δ) exhibiting opposing flucytosine susceptibility. As a result, a total of 177 flucytosine-responsive genes were identified, and many of them were found to be regulated by Tco1 or Tco2. Among these, we discovered an APSES-like transcription factor, Mbs1 (Mbp1- and Swi4-like protein 1). Expression analysis revealed that MBS1 was regulated in response to flucytosine in a Tco2/Hog1-dependent manner. Supporting this, C. neoformans with the deletion of MBS1 exhibited increased susceptibility to flucytosine. Intriguingly, Mbs1 played pleiotropic roles in diverse cellular processes of C. neoformans. Mbs1 positively regulated ergosterol biosynthesis and thereby affected polyene and azole drug susceptibility. Mbs1 was also involved in genotoxic and oxidative stress responses. Furthermore, Mbs1 promoted production of melanin and capsule and thereby was required for full virulence of C. neoformans. In conclusion, Mbs1 is considered to be a novel antifungal therapeutic target for treatment of cryptococcosis.
    Eukaryotic Cell 11/2011; 11(1):53-67. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fungal pathogen Candida albicans is frequently seen in immune suppressed patients, and resistance to one of the most widely used antifungals, fluconazole (FLC), can evolve rapidly. In recent years it has become clear that plasticity of the Candida albicans genome contributes to drug resistance through loss of heterozygosity (LOH) at resistance genes and gross chromosomal rearrangements that amplify gene copy number of resistance associated genes. This study addresses the role of the homologous recombination factors Rad54 and Rdh54 in cell growth, DNA damage and FLC resistance in Candida albicans. The data presented here support a role for homologous recombination in cell growth and DNA damage sensitivity, as Candida albicans rad54Δ/rad54Δ mutants were hypersensitive to MMS and menadione, and had an aberrant cell and nuclear morphology. The Candida albicans rad54Δ/rad54Δ mutant was defective in invasion of Spider agar, presumably due to the altered cellular morphology. In contrast, mutation of the related gene RDH54 did not contribute significantly to DNA damage resistance and cell growth, and deletion of either Candida albicans RAD54 or Candida albicans RDH54 did not alter FLC susceptibility. Together, these results support a role for homologous recombination in genome stability under nondamaging conditions. The nuclear morphology defects in the rad54Δ/rad54Δ mutants show that Rad54 performs an essential role during mitotic growth and that in its absence, cells arrest in G2. The viability of the single mutant rad54Δ/rad54Δ and the inability to construct the double mutant rad54Δ/rad54Δ rdh54Δ/rdh54Δ suggests that Rdh54 can partially compensate for Rad54 during mitotic growth.
    BMC Microbiology 09/2011; 11:214. · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although dermatophytes are the most common cause of fungal infections in the world, their basic biology is not well understood. The recent sequencing and annotation of the genomes of five representative dermatophyte species allows for the creation of hypotheses as to how they cause disease and have adapted to their distinct environments. An understanding of the microbiology of these strains will be essential for testing these hypotheses. This study is the first to generally characterize these five sequenced strains of dermatophytes for their microbiological aspects. We measured the growth rate on solid medium and found differences between species, with Microsporum gypseum CBS118893 having the fastest growth and Trichophyton rubrum CBS118892 the slowest. We also compared different media for conidia production and found that the highest numbers of conidia were produced when dermatophytes were grown on MAT agar. We determined the Minimum Inhibitory Concentration (MIC) of nine antifungal agents and confirmed susceptibility to antifungals commonly used as selectable markers. Finally, we tested virulence in the Galleria mellonella (wax moth) larvae model but found the results variable. These results increase our understanding of the microbiology and molecular biology of these dermatophyte strains and will be of use in advancing hypothesis-driven research about dermatophytes.
    Fungal Genetics and Biology 03/2011; 48(3):335-41. · 3.26 Impact Factor
  • Source
    Janet F Staab, Theodore C White, Kieren A Marr
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference/silencing mechanisms triggered by double-stranded RNA (dsRNA) have been described in many eukaryotes, including fungi. These mechanisms have in common small RNA molecules (siRNAs or microRNAs) originating from dsRNAs that, together with the effector protein Argonaute, mediate silencing. The genome of the fungal pathogen Candida albicans harbours a well-conserved Argonaute and a non-canonical Dicer, essential members of silencing pathways. Prototypical siRNAs are detected as members of the C. albicans transcriptome, which is potential evidence of RNA interference/silencing pathways in this organism. Surprisingly, expression of a dsRNA a hairpin ADE2 dsRNA molecule to interfere with the endogenous ADE2 mRNA did not result in down-regulation of the message or produce adenine auxotrophic strains. Cell free assays showed that the hairpin dsRNA was a substrate for the putative C. albicans Dicer, discounting the possibility that the nature of the dsRNA trigger affects silencing functionality. Our results suggested that unknown cellular events govern the functionality of siRNAs originating from transgenes in RNA interference/silencing pathways in C. albicans.
    Yeast 01/2011; 28(1):1-8. · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens.
    Genome biology 01/2011; 12(1):R7. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Candida albicans Upc2p transcription factor regulates ERG11, encoding the target of azole drugs. Gain-of-function mutations that contribute to resistance were recently identified in a series of sequential clinical isolates (N. Dunkel, T. T. Liu, K. S. Barker, R. Homayouni, J. Morschhauser, and P. D. Rogers, Eukaryot. Cell 7:1180-1190, 2008). In the present study, UPC2 was sequenced from a matched set of 17 isolates. An A643V substitution was present in all of the isolates in the series that overexpressed ERG11. Azole susceptibility, ergosterol levels, and expression of ERG genes were elevated in the A643V clinical isolates and in reconstructed strains.
    Antimicrobial Agents and Chemotherapy 11/2010; 55(2):940-2. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Candida albicans, ergosterol biosynthetic genes, including ERG11, which encodes the target of azole antifungal drugs, are regulated by the transcriptional regulator Upc2p. To initially characterize the promoter of the UPC2 gene, 5' rapid amplification of cDNA ends was used to identify two transcriptional initiation sites upstream of the ATG codon. The regions within the UPC2 promoter required for azole regulation of the UPC2 promoter were then identified using nested deletions fused to a luciferase reporter which were tested for azole inducibility in wild-type (WT) and upc2Delta/upc2Delta strains. Two distinct regions important for azole induction were identified: a Upc2p-dependent region (UDR) between bp -450 and -350 upstream of the ATG codon and a Upc2p-independent region (UIR) between bp -350 and -250 upstream of the ATG codon. Within the UDR, loss or mutation of the sterol response element (SRE), so named because of homology to the Saccharomyces cerevisiae Upc2p binding site, resulted in a decrease in both basal and induced expression in the WT strain but did not affect azole inducibility in the upc2Delta/upc2Delta deletion strain. Gel shift analyses using the DNA binding domain of Upc2p confirmed binding of the protein to two SRE-related sequences within the UPC2 promoter, with strongest binding to the UDR SRE. Detailed gel shift analyses of the UDR SRE shows that Upc2p binds to a bipartite element within the UPC2 promoter, including the previously identified SRE and a new, adjacent element, the short direct repeat (SDR), with partial homology to the SRE.
    Eukaryotic Cell 09/2010; 9(9):1354-62. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The yeast-like fungus Cryptococcus neoformans favours respiration as a mechanism of energy production, and thus depends heavily on mitochondrial function. Previous studies of a C. neoformans vad1Delta mutant revealed reduced expression of the mitochondrial elongation factor TUF1 and defects in glycerol utilization, consistent with mitochondrial dysfunction. In this study, we found that in trans expression of TUF1 in the vad1Delta mutant suppressed the mitochondrial defects, including growth on respiration-dependent carbon sources and fluconazole resistance, associated with VAD1 deletion. Tetracycline, an inhibitor of mitochondrial translation, was found to confer resistance to fluconazole in the wild-type and vad1Delta mutant, whereas the fluconazole susceptibility of the TUF1-overexpressing strain was unaffected by tetracycline treatment. In the presence of fluconazole, the vad1Delta mutant exhibited increased activation of the global transcriptional regulator Sre1. TUF1 overexpression failed to alter cleavage of Sre1 in response to fluconazole in the vad1Delta mutant, suggesting that TUF1 repression in the vad1Delta mutant is distal to Sre1, or that it occurs through an independent pathway.
    Microbiology 08/2010; 156(Pt 8):2558-65. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
    PLoS Pathogens 01/2010; 6(9):e1001126. · 8.14 Impact Factor
  • Source
    Wenjun Li, Banu Metin, Theodore C White, Joseph Heitman
    [Show abstract] [Hide abstract]
    ABSTRACT: Sexual reproduction in fungi is governed by a specialized genomic region, the mating type (MAT) locus, whose gene identity, organization, and complexity are diverse. We identified the MAT locus of five dermatophyte fungal pathogens (Microsporum gypseum, Microsporum canis, Trichophyton equinum, Trichophyton rubrum, and Trichophyton tonsurans) and a dimorphic fungus, Paracoccidioides brasiliensis, and performed phylogenetic analyses. The identified MAT locus idiomorphs of M. gypseum control cell type identity in mating assays, and recombinant progeny were produced. Virulence tests in Galleria mellonella larvae suggest the two mating types of M. gypseum may have equivalent virulence. Synteny analysis revealed common features of the MAT locus shared among these five dermatophytes: namely, a small size ( approximately 3 kb) and a novel gene arrangement. The SLA2, COX13, and APN2 genes, which flank the MAT locus in other Ascomycota are instead linked on one side of the dermatophyte MAT locus. In addition, the transcriptional orientations of the APN2 and COX13 genes are reversed compared to the dimorphic fungi Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. A putative transposable element, pogo, was found to have inserted in the MAT1-2 idiomorph of one P. brasiliensis strain but not others. In conclusion, the evolution of the MAT locus of the dermatophytes and dimorphic fungi from the last common ancestor has been punctuated by both gene acquisition and expansion, and asymmetric gene loss. These studies further support a foundation to develop molecular and genetic tools for dermatophyte and dimorphic human fungal pathogens.
    Eukaryotic Cell 10/2009; 9(1):46-58. · 3.59 Impact Factor
  • Source
    Chelsea Marie, Theodore C White
    [Show abstract] [Hide abstract]
    ABSTRACT: Antifungal resistance caused by mutations of the drug target, overexpression of the drug target, and drug efflux by the upregulation of transporters is increasingly common. Recently our understanding of fungal drug resistance has been advanced by the identification of three key transcriptional regulators of resistance: Tac1p, Upc2p, and Mrr1p. The discovery of hyperactive variants of these regulators in resistant clinical isolates confirms the importance of transcriptional regulation in the development of antifungal resistance. Alternative mechanisms of drug resistance including aneuploidy and biofilm formation have recently been documented in fungi; as well as the phenomenon of drug tolerance. Characterization of the transcriptional regulation of fungal drug resistance and the identification of novel mechanisms of resistance has implications for current therapy and for the development of future antifungal drugs.
    Current Fungal Infection Reports 09/2009; 3(3):163-169.

Publication Stats

3k Citations
226.00 Total Impact Points

Institutions

  • 2011–2014
    • University of Missouri - Kansas City
      • • School of Biological Sciences
      • • Division of Cell Biology and Biophysics
      Kansas City, Missouri, United States
    • Duke University Medical Center
      Durham, North Carolina, United States
  • 2012–2013
    • Western Washington University
      Bellingham, Washington, United States
    • Broad Institute of MIT and Harvard
      Cambridge, Massachusetts, United States
  • 1997–2012
    • Seattle Institute for Biomedical and Clinical Research
      Seattle, Washington, United States
  • 1997–2010
    • University of Washington Seattle
      • • Department of Pathology
      • • Department of Global Health
      • • Division of Allergy and Infectious Diseases
      Seattle, Washington, United States
  • 2009
    • University of Virginia
      • Department of Medicine
      Charlottesville, VA, United States
  • 2002
    • Santa Clara Valley Medical Center
      San Jose, California, United States
  • 1999–2001
    • Fred Hutchinson Cancer Research Center
      • Division of Clinical Research
      Seattle, Washington, United States