E Giulotto

National Research Council, Roma, Latium, Italy

Are you E Giulotto?

Claim your profile

Publications (109)424.14 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the crosstalk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells. We found that TERRA co-localizes with telomeres during mammalian meiosis and that its expression progressively increases during spermatogenesis, until the beginning of spermiogenesis. While both TERRA levels and distribution would be regulated in a gender-specific manner, telomere-TERT co-localization appears to be regulated based on species-specific characteristics of the telomeric structure. Moreover, we found that TERT localization at telomeres is maintained all through spermatogenesis as a structural component without affecting telomere elongation. Our results represent the first evidences of co-localization between telomerase and telomeres during mammalian gametogenesis.
    Biology of Reproduction 04/2014; · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process. Just after telomerase catalytic subunit (hTERT) expression, cen3tel telomeres shortened despite the presence of telomerase activity. At a later stage and concomitantly with transformation, cells started elongating telomeres, which reached a mean length greater than 100 kb in about 900 population doublings. Super-telomeres were stable and compatible with cell growth and tumorigenesis. Telomere extension was associated with increasing levels of telomerase activity that were linked to deregulation of endogenous telomerase RNA (hTERC) and exogenous telomerase reverse transcriptase (hTERT) expression. Notably, the increase in hTERC levels paralleled the increase in telomerase activity, suggesting that this subunit plays a role in regulating enzyme activity. Telomeres ranging in length between 10 and more than 100 kb were maintained in an extendible state although TRF1 and TRF2 binding increased with telomere length. Super-telomeres neither influenced subtelomeric region global methylation nor the expression of the subtelomeric gene FRG1, attesting the lack of a clear-cut relationship between telomere length, subtelomeric DNA methylation and expression in human cells. The cellular levels of the telomeric proteins hTERT, TRF1, TRF2 and Hsp90 raised with transformation and were independent of telomere length, pointing to a role of these proteins in tumorigenesis.
    Biochimica et Biophysica Acta 04/2013; · 4.66 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian telomeres are transcribed into long non-coding telomeric repeat-containing RNA (TERRA) molecules that seem to play a role in the maintenance of telomere stability. In human cells, CpG-island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length. To test this hypothesis we measured telomere length and TERRA levels in single clones isolated from five human cell lines: HeLa (cervical carcinoma), BRC-230 (breast cancer), AKG and GK2 (gastric cancers), and GM847 (SV40 immortalized skin fibroblasts). However, these two parameters did not correlate with each other. Moreover, cell survival to γ-rays did not show a significant variation among the clones, suggesting that, in this cellular system, the intra-population variability in telomere length and TERRA levels does not influence sensitivity to ionizing radiation. This conclusion was supported by the observation that in a cell line in which telomeres were greatly elongated by the ectopic expression of telomerase, TERRA expression levels and radiation sensitivity were similar to the parental HeLa cell line.
    Frontiers in Oncology 01/2013; 3:115.
  • Source
    Frontiers in Oncology 01/2013; 3:245.
  • [Show abstract] [Hide abstract]
    ABSTRACT: GaAsN/GaAsN:H heterostructures were made by an in-plane selective hydrogen incorporation controlled by H-opaque metallic masks. The strain field and hydrogen distributions in GaAsN micro-sized wires thus obtained have been mapped by an all optical procedure that combines micro-Raman scattering and photoreflectance spectroscopy. The strain field is related to the formation of N-H complexes along the hydrogen diffusion profile with an ensuing expansion of the GaAsN lattice whose patterning generates an anisotropic stress in the sample growth plane. These results highlight a powerful non-invasive tool to simultaneously determine both the H diffusion profile and the related strain field distribution.
    Applied Physics Letters 11/2012; 101(19). · 3.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: STUDY QUESTION: What is the distribution of telomeric repeat-containing RNA (TERRA) and of telomerase in human fetal oocytes? SUMMARY ANSWER: TERRA forms discrete foci at telomeres of human fetal oocytes and it co-localizes with both the shelterin component telomeric repeat-binding factor 2 (TRF2) and the catalytic subunit of human telomerase at the telomeres of meiotic chromosomes. WHAT IS KNOWN ALREADY: TERRA is a structural element of the telomeric chromatin that has been described in somatic cells of many different eukaryote species. The telomerase enzyme is inactive in adult somatic cells but is active in germ cells, stem cells and in the majority of tumors; however, its distribution in oocytes is still unknown. STUDY DESIGN, SIZE, DURATION: For this study, ovarian samples from four euploid fetuses of 22 gestational weeks were used. These samples were obtained with the consent of the parents and of the Ethics Committee of Hospital de la Vall d'Hebron. PARTICIPANTS/MATERIALS, SETTING, METHODS: We analyzed the distribution of TERRA and telomerase in cells derived from human fetal ovaries. The co-localization of TERRA, telomerase and telomeres was performed by optimizing a combination of immunofluorescence (IF) and RNA-fluorescent in situ hybridization (RNA-FISH) techniques. The synaptonemal complex protein 3 (SYCP3), TRF2 and protein component of telomerase [telomerase reverse transcriptase (TERT)] were detected by IF, whereas TERRA was revealed by RNA-FISH using a (CCCTAA)(3) oligonucleotide. SYCP3 signals allowed us to identify oocytes that had entered meiosis and classify them into the different stages of prophase I, whereas TRF2 indicated the telomeric regions of chromosomes. MAIN RESULTS AND THE ROLE OF CHANCE: We show for the first time the presence of TERRA and the intracellular distribution of telomerase in human fetal ovarian cells. TERRA is present, forming discrete foci, in 75% of the ovarian tissue cells and most of TERRA molecules (∼83%) are at telomeres (TRF2 co-localization). TERRA levels are higher in oocytes than in ovarian tissue cells (P = 0.00), and do not change along the progression of the prophase I stage (P = 0.37). TERRA is present on ∼23% of the telomeres in all cell types derived from human fetal ovaries. Moreover, ∼22% of TERRA foci co-localize with the protein component of telomerase (TERT). LIMITATIONS, REASONS FOR CAUTION: We present a descriptive/qualitative study of TERRA in human fetal ovarian tissue. Given the difficult access and manipulation of fetal samples, the number of fetal ovaries used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS: This is the first report on TERRA expression in oocytes from human fetal ovaries. The presence of TERRA at the telomeres of oocytes from the leptotene to pachytene stages and its co-localization with the telomerase protein component suggests that this RNA might participate in the maintenance of the telomere structure, at least through the processes that take place during the female meiotic prophase I. Since telomeres in oocytes have been mainly studied regarding the bouquet structure, our results introduce a new viewpoint of the telomeric structure during meiosis. STUDY FUNDING/COMPETING INTEREST(S): R.R.-V. is a recipient of a PIF fellowship from Universitat Autònoma de Barcelona. This work was supported by the Generalitat de Catalunya (2009SGR1107). The authors declare that no competing interests exist.
    Human Reproduction 10/2012; · 4.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many human primary somatic cells can be immortalized by inducing telomerase activity through the exogenous expression of the human telomerase catalytic subunit (hTERT). This approach has been extended to the immortalization of cell lines from several mammals. Here, we show that hTERT expression is not sufficient to immortalize primary fibroblasts from three equid species, namely donkey, Burchelli's zebra and Grevy's zebra. In vitro analysis of a reconstituted telomerase composed by hTERT and an equid RNA component of telomerase (TERC) revealed a low activity of this enzyme compared to human telomerase, suggesting a low compatibility of equid and human telomerase subunits. This conclusion was also strengthened by comparison of human and equid TERC sequences, which revealed nucleotide differences in key regions for TERC and TERT interaction. We then succeeded in immortalizing equid fibroblasts by expressing hTERT and hTERC concomitantly. Expression of both human telomerase subunits led to telomerase activity and telomere elongation, indicating that human telomerase is compatible with the other equid telomerase subunits and proteins involved in telomere metabolism. The immortalization procedure described herein could be extended to primary cells from other mammals. The availability of immortal cells from endangered species could be particularly useful for obtaining new information on the organization and function of their genomes, which is relevant for their preservation.
    Chromosoma 07/2012; 121(5):475-88. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A-R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ~130-160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii--the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.
    Proceedings of the National Academy of Sciences 02/2012; 109(7):2449-54. · 9.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the karyotype of Equus asinus (domestic donkey, 2n = 62), non-centromeric heterochromatic bands have been described in subcentromeric and telomeric positions. In particular, chromosome 1 is characterised by heterochromatic bands in the proximal region of the long arm and in the short arm; it has been shown that these regions are polymorphic in size. Here we investigated the variation in the intensity and distribution of fluorescence signals observed on donkey chromosome 1 after in situ hybridization with two DNA probes containing fragments from the two major equine satellite DNA families. Our results show that, in Equus asinus chromosome 1, the amount and distribution of large clusters of satellite DNA can define at least nine polymorphic variants of the constitutive heterochromatin that cannot be detected by C-banding alone.
    Hereditas 06/2011; 148(3):110-3. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on Raman scattering experiments on InAs/AlxGa1-xAs quantum dot heterostructures with 0 <= x <= 0.6. The samples were prepared by using molecular beam epitaxy (MBE) and atomic layer MBE for the growth of different layers. For x > 0, we detected several lines originating from the AlxGa1-xAs alloy. These can be related to scattering from GaAs-like and AlAs-like phonons with q congruent to 0, and weaker scattering from disorder-activated phonons with q not equal 0. In particular, we identified a line at similar to 250 cm(-1) as due to disorder-activated longitudinal optical phonons in the alloy. This conclusion is different than the attribution of this line to scattering from dots and, consequently, we do not recognize the possibility of deriving any information about the actual composition of the dots from an analysis of this line as proposed by other authors. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3567024]
    Applied Physics Letters 05/2011; 98:111903. · 3.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.
    Cell Research 03/2011; 21(7):1028-38. · 10.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammalian cells gene amplification is a common manifestation of genome instability promoted by DNA double-strand breaks (DSBs). The repair of DSBs mainly occurs through two mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). We previously showed that defects in the repair of DSBs via NHEJ could increase the frequency of gene amplification. In this paper we explored whether a single or a combined defect in DSBs repair pathways can affect gene amplification. We constructed human cell lines in which the expression of RAD54 and/or DNA-PKcs was constitutively knocked-down by RNA interference. We analyzed their radiosensitivity and their capacity to generate amplified DNA. Our results showed that both RAD54 and DNA-PKcs deficient cells are hypersensitive to γ-irradiation and generate methotrexate resistant colonies at a higher frequency compared to the proficient cell lines. In addition, the analysis of the cytogenetic organization of the amplicons revealed that isochromosome formation is a prevalent mechanism responsible for copy number increase in RAD54 defective cells. Defects in the DSBs repair mechanisms can influence the organization of amplified DNA. The high frequency of isochromosome formation in cells deficient for RAD54 suggests that homologous recombination proteins might play a role in preventing rearrangements at the centromeres.
    Genome integrity. 03/2011; 2(1):5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We mapped six genes (EIF4G3, HSP90, RBBP6, IL8, TERT, and TERC) on the chromosomes of Equus caballus, Equus asinus, Equus grevyi, and Equus burchelli by fluorescence in situ hybridization. Our results add six type I markers to the cytogenetic map of these species and provide new information on the comparative genomics of the genus Equus.
    Animal Biotechnology 01/2011; 22(3):119-23. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Export Date: 28 March 2012, Source: Scopus, Art. No.: 111903
    Applied Physics Letters 01/2011; 98(11). · 3.79 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state.
    Animal Genetics 12/2010; 41 Suppl 2:176-85. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from Raman scattering, EPR and static magnetization measurements in CaCu3Ti4O12, a perovskite-related material characterized by a colossal dielectric permittivity ϵ0. The investigated samples were pure and partially substituted in the octahedral Ti sites by other transition metals. The results from the pure material are interpreted in terms of the presence of delocalized Copper-holes. Substitutions in the Ti sites drastically change the magnetic properties and, most evidently in the case of Cr, also affect the Raman spectra. These effects correlate with the known suppression of the colossal ϵ0 after the same kind of substitutions.
    Ferroelectrics 07/2010; 298(1):61-67. · 0.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA double-strand breaks (DSBs) are one of the main types of damage induced by ionizing radiations. Free DNA ends that are not correctly repaired can be engaged in pathways triggering gene amplification. Following gene amplification the copy number of a portion of the genome is increased, leading to an enhanced expression of the genes located in the amplified region. Gene amplification plays an important role in cancer, being one of the mechanisms of oncogene activation; in addition, it can confer resistance to chemotherapeutic agents, through the increase in the copy number of genes coding for drug targets. The presence of gene amplification can have a prognostic and a diagnostic value and can help in orienting therapy in specific tumour types. The amplified DNA is primarily produced through recombination-based pathways and can be located either within chromosomes or on extra-chromosomal acentric elements. Studies on the organization of the amplified DNA in tumour cells and in cultured drug resistant cells have suggested that a single DSB can trigger a cascade of events leading to a large number of copies of a region of the genome. In addition, it has been shown that amplified DNA is unstable, further increasing the long-term effect of the initial event. Gene amplification is a peculiar feature of transformed cells and the ability to amplify is strongly influenced by the cellular genetic background. Genes involved in DNA damage response and in DNA damage repair can play a role in controlling the amplification process, in particular, it has been shown that defects in DSB repair functions can increase the frequency of gene amplification. In this review, we will discuss the biological significance of gene amplification, together with the role of DNA DSBs and DSB repair genes in the generation of amplified DNA.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 01/2010; 704(1-3):29-37. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.
    PLoS Genetics 01/2010; 6(2):e1000845. · 8.52 Impact Factor

Publication Stats

2k Citations
424.14 Total Impact Points

Institutions

  • 1998–2013
    • National Research Council
      • Institute of Molecular Genetics IGM
      Roma, Latium, Italy
  • 1991–2013
    • University of Pavia
      • • Department of Biology and Biotechnology "Lazzaro Spallanzani"
      • • Department of Chemistry
      • • Department of Physics
      Pavia, Lombardy, Italy
  • 2006–2007
    • National Institute of Molecular Genetics (INGM)
      Milano, Lombardy, Italy
    • Università degli Studi di Bari Aldo Moro
      Bari, Apulia, Italy