Song Jin

University of Wisconsin–Madison, Madison, Wisconsin, United States

Are you Song Jin?

Claim your profile

Publications (99)1018.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Layered double hydroxides (LDHs) are a family of two-dimensional (2D) materials with layered crystal structures that have found many applications. Common strategies to synthesize LDHs lead to a wide variety of morphologies, from discrete 2D nanosheets to nanoflowers. Here we report a study of carefully controlled LDH nanoplate syntheses using zinc aluminum (ZnAl) and cobalt aluminum (CoAl) LDHs as examples, and reveal their crystal growth to be driven by screw dislocations. By controlling and maintaining a low precursor supersaturation using a continuous flow reactor, individual LDH nanoplates with well-defined morphologies were synthesized on alumina-coated substrates, instead of the nanoflowers that result from uncontrolled overgrowth. The dislocation-driven growth was further established for LDH nanoplates directly synthesized using the respective metal salt precursors. Atomic force microscopy revealed screw dislocation growth spirals, and under transmission electron microscopy thin CoAl LDH nanoplates displayed complex contrast contours indicative of strong lattice strain caused by dislocations. These results suggest the dislocation-driven mechanism is generally responsible for the growth of 2D LDH nanostructures, and likely other materials with layered crystal structures, which could help the rational synthesis of well-defined 2D nanomaterials with improved properties.
    Nano Letters 04/2015; DOI:10.1021/acs.nanolett.5b00758 · 12.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage which enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.
    Journal of the American Chemical Society 04/2015; DOI:10.1021/jacs.5b02651 · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The remarkable performance of lead halide perovskites in solar cells can be attributed to the long carrier lifetimes and low non-radiative recombination rates, the same physical properties that are ideal for semiconductor lasers. Here, we show room-temperature and wavelength-tunable lasing from single-crystal lead halide perovskite nanowires with very low lasing thresholds (220 nJ cm(-2)) and high quality factors (Q ∼ 3,600). The lasing threshold corresponds to a charge carrier density as low as 1.5 × 10(16) cm(-3). Kinetic analysis based on time-resolved fluorescence reveals little charge carrier trapping in these single-crystal nanowires and gives estimated lasing quantum yields approaching 100%. Such lasing performance, coupled with the facile solution growth of single-crystal nanowires and the broad stoichiometry-dependent tunability of emission colour, makes lead halide perovskites ideal materials for the development of nanophotonics, in parallel with the rapid development in photovoltaics from the same materials.
    Nature Material 04/2015; DOI:10.1038/nmat4271 · 36.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To address the complexity of proteome in mass spectrometry (MS)-based top-down proteomics, multi-dimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the proteome complexity. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high-resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 non-redundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
    Analytical Chemistry 04/2015; DOI:10.1021/acs.analchem.5b00657 · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skyrmions, novel topologically stable spin vortices, hold promise for next-generation magnetic storage due to their nanoscale domains to enable high information storage density and their low threshold for current-driven motion to enable ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. Here we use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, for the first time, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of $10^{8}-10^{9} Am^{-2}$ enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of protein phosphorylation remains a significant challenge due to the low abundance of phosphoproteins and the low stoichiometry of phosphorylation, which requires effective enrichment of phosphoproteins. Here we have developed superparamagnetic nanoparticles (NPs) whose surface is functionalized by multivalent ligand molecules that specifically bind to the phosphate groups on any phosphoproteins. These NPs enrich phosphoproteins from complex cell and tissue lysates with high specificity as confirmed by SDS-PAGE analysis with a phosphoprotein-specific stain and mass spectrometry analysis of the enriched phosphoproteins. This method enables universal and effective capture, enrichment, and detection of intact phosphoproteins towards a comprehensive analysis of the phosphoproteome.
    Journal of the American Chemical Society 02/2015; DOI:10.1021/ja511833y · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the controlled synthesis of NiCo layered double hydroxide (LDH) nanoplates using a newly developed high temperature high pressure hydrothermal continuous flow reactor (HCFR), which enables direct growth onto conductive substrates in high yield, and most importantly better control of the precursor supersaturation and thus nanostructure morphology and size. The solution coordination chemistry of metal-ammonia complexes was utilized to synthesize well-defined NiCo LDH nanoplates directly in a single step without topochemical oxidation. The as-grown NiCo LDH nanoplates exhibit a high catalytic activity toward the oxygen evolution reaction (OER). By chemically exfoliating LDH nanoplates to thinner nanosheets, the catalytic activity can be further enhanced to yield an electrocatalytic current density of 10 mA cm(-2) at an overpotential of 367 mV and a Tafel slope of 40 mV dec(-1). Such enhancement could be due to the increased surface area and more exposed active sites. X-ray photoelectron spectroscopy (XPS) suggests the exfoliation also caused some changes in electronic structure. This work presents general strategies to controllably grow nanostructures of LDH and ternary oxide/hydroxides in general, and to enhance the electrocatalytic performance of layered nanostructures by exfoliation.
    Nano Letters 01/2015; 15(2). DOI:10.1021/nl504872s · 12.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report amorphous MoSxCly as a high-performance electrocatalyst for both electrochemical and photoelectrochemical hydrogen generation. This novel ternary electrocatalyst is synthesized via chemical vapour deposition at temperatures lower than those typically used to grow crystalline MoS2 nanostructures and structurally characterized. The MoSxCly electrocatalysts exhibit stable and high catalytic activity toward the hydrogen evolution reaction, as evidenced by large cathodic current densities at low overpotentials and low Tafel slopes (ca. 50 mV decade-1). The electrocatalytic performance can be further enhanced through depositing MoSxCly on conducting vertical graphenes. Furthermore, MoSxCly can be directly deposited on p-type silicon photocathodes to enable efficient photoelectrochemical hydrogen evolution.
    Energy & Environmental Science 01/2015; DOI:10.1039/C4EE03240C · 15.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.
    Nature Communications 01/2015; 6:6723. DOI:10.1038/ncomms7723 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed band energy diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.
    Journal of the American Chemical Society 11/2014; 136(49). DOI:10.1021/ja509142w · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding semiconductor surface states is critical for their applications, but fully characterizing surface electrical properties is challenging. Such a challenge is especially crippling for semiconducting iron pyrite (FeS2), whose potential for solar energy conversion has been suggested to be held back by rich surface states. Here, by taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we develop a general method to fully characterize both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices. Our study shows that pyrite is n-type in the bulk and p-type near the surface due to strong inversion and yields the concentrations and mobilities of both bulk electrons and surface holes. Further, solutions of the Poisson equation reveal a high-density of surface holes accumulated in a 1.3 nm thick strong inversion layer and an upward band bending of 0.9-1.0 eV. This work presents a general methodology for using transport measurements of nanostructures to study both bulk and surface transport properties of semiconductors. It also suggests that high-density of surface states are present on surface of pyrite, which partially explains the universal p-type conductivity and lack of photovoltage in polycrystalline pyrite.
    Nano Letters 11/2014; DOI:10.1021/nl501942w · 12.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1-xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1-xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1-xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
    Advanced Energy Materials 10/2014; 4(14). DOI:10.1002/aenm.201400452 · 14.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many materials have been explored as potential hydrogen evolution reaction (HER) electrocatalysts to generate clean hydrogen fuel via water electrolysis, but none so far compete with the highly efficient and stable (but cost prohibitive) noble metals. Similarly, noble metals often excel as electrocatalytic counter electrode materials in regenerative liquid-junction photoelectrochemical solar cells, such as quantum dot-sensitized solar cells (QDSSCs) that employ the sulfide/polysulfide redox electrolyte as the hole mediator. Here, we systematically investigate thin films of the earth-abundant pyrite-phase transition metal disulfides (FeS2, CoS2, NiS2, and their alloys) as promising alternative electrocatalysts for both the HER and polysulfide reduction. Their electrocatalytic activity toward the HER is correlated to their composition and morphology. The emergent trends in their performance suggest that cobalt plays an important role in facilitating the HER, with CoS2 exhibiting highest overall performance. Additionally, we demonstrate the high activity of the transition metal pyrites toward polysulfide reduction and highlight the particularly high intrinsic activity of NiS2, which could enable improved QDSSC performance. Furthermore, structural disorder introduced by alloying different transition metal pyrites could increase their areal density of active sites for catalysis, leading to enhanced performance.
    The Journal of Physical Chemistry C 09/2014; 118(37):21347-21356. DOI:10.1021/jp506288w · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semiconducting higher manganese silicides (HMS), with a nominal composition of MnSi1.73, are particularly promising thermoelectric materials because of their elemental abundance, nontoxicity, and reported ZT of around 0.4 at 800 K for undoped samples. However, embedded MnSi impurities naturally form during the melt growth of HMS materials. The influences of such naturally occurring MnSi impurities within bulk HMS have yet to be carefully studied. Herein, we report the synthesis of high-purity MnSi-free single crystals of HMS by chemical vapor transport and the thermoelectric properties of consolidated HMS samples prepared by spark plasma sintering (SPS). The high purity of the HMS crystals is verified by scanning and transmission electron microscopy, electron diffraction, and synchrotron high-resolution X-ray diffraction. Despite successfully growing high purity HMS single crystals, we find that MnSi will nevertheless precipitate from HMS after SPS processing. In-situ sychrotron high-resolution X-ray diffraction experiments show that HMS are unstable at high temperatures. Despite the precipitation of MnSi inclusions within the HMS materials, we show that samples prepared from undoped single crystals of HMS exhibit higher hole mobilities owing to their higher purity, resulting in an improved maximum ZT of 0.52 +/- 0.08 at 750 K.
    Chemistry of Materials 09/2014; 26(17):5097-5104. DOI:10.1021/cm5023823 · 8.54 Impact Factor
  • Matthew S. Faber, Song Jin
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrocatalysis plays a key role in the energy conversion processes central to several renewable energy technologies that have been developed to lessen our reliance on fossil fuels. However, the best electrocatalysts for these processes—which include the hydrogen evolution reaction (HER), the oxygen reduction reaction (ORR), and the redox reactions that enable regenerative liquid-junction photoelectrochemical solar cells—often contain scarce and expensive noble metals, substantially limiting the potential for these technologies to compete with fossil fuels. The considerable challenge is to develop robust electrocatalysts composed exclusively of low-cost, earth-abundant elements that exhibit activity comparable to that of the noble metals. In this review, we summarize recent progress in the development of such high-performance earth-abundant inorganic electrocatalysts (and nanostructures thereof), classifying these materials based on their elemental constituents. We then detail the most critical obstacles facing earth-abundant inorganic electrocatalysts and discuss various strategies for further improving their performance. Lastly, we offer our perspectives on the current directions of earth-abundant inorganic electrocatalyst development and suggest pathways toward achieving performance competitive with their noble metal-containing counterparts.
    Energy & Environmental Science 08/2014; 7(11). DOI:10.1039/C4EE01760A · 15.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report metallic WS2 nanosheets that display excellent catalytic activity for hydrogen evolution reaction (HER) that is the best reported for MX2 materials. They are chemically exfoliated from WS2 nanostructures synthesized by chemical vapour deposition, including by using a simple and fast microwave-assisted intercalation method. Structural and electrochemical studies confirm that the simultaneous conversion and exfoliation of semiconducting 2H-WS2 into nanosheets of its metallic 1T polymorph result in facile electrode kinetics, excellent electrical transport, and proliferation of catalytically active sites.
    Energy & Environmental Science 07/2014; 7(8). DOI:10.1039/C4EE01329H · 15.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the challenges in proteomics is the proteome's complexity which necessitates the fractionation of proteins prior to the mass spectrometry (MS) analysis. Despite recent advances in top-down proteomics, separation of intact proteins remains challenging. Hydrophobic interaction chromatography (HIC) appears to be a promising method that provides high-resolution separation of intact proteins, but unfortunately the salts conventionally used for HIC are incompatible with MS. In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable separation performance as the conventionally used ammonium sulfate. Furthermore, we found that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that of reverse phase chromatography (RPC). By coupling HIC and RPC as a novel two-dimensional chromatographic method, we have achieved effective high-resolution intact protein separation as demonstrated with standard protein mixtures and a complex cell lysate. Subsequently, the separated intact proteins were identified by high-resolution top-down MS. For the first time, these results have shown the high potential of HIC as a high-resolution protein separation method for top-down proteomics.
    Analytical Chemistry 06/2014; 86(15). DOI:10.1021/ac501836k · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of efficient and robust earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) is an ongoing challenge. We report metallic cobalt pyrite (cobalt disulfide, CoS2) as one such high-activity candidate material, and demonstrate that its specific morphology-film, microwire, or nanowire, made available through controlled synthesis-plays a crucial role in determining its overall catalytic efficacy. The increase in effective electrode surface area that accompanies CoS2 micro- and nanostructuring substantially boosts its performance, with CoS2 nanowire electrodes achieving geometric current densities of -10 mA cm(-2) at overpotentials as low as -145 mV vs. the reversible hydrogen electrode. Moreover, micro- and nanostructuring of the CoS2 material has the synergistic effect of increasing its operational stability, cyclability, and maximum achievable rate of hydrogen generation by promoting the release of evolved gas bubbles from the electrode surface. The benefits of catalyst micro- and nanostructuring are further demonstrated by the increased electrocatalytic activity of CoS2 nanowire electrodes over planar film electrodes toward polysulfide and triiodide reduction, which suggests a straightforward way to improve the performance of quantum dot- and dye-sensitized solar cells, respectively. Extension of this micro- and nanostructuring strategy to other earth-abundant materials could similarly enable inexpensive electrocatalysts that lack the high intrinsic activity of the noble metals.
    Journal of the American Chemical Society 06/2014; 136(28). DOI:10.1021/ja504099w · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the preparation and characterization of highly efficient and robust photocathodes based on heterostructures of chemically exfoliated metallic 1T-MoS2 and planar p-type Si for solar-driven hydrogen production. Photocurrents up to 17.6 mA/cm(2) at 0 V vs reversible hydrogen electrode were achieved under simulated 1 sun irradiation, and excellent stability was demonstrated over long-term operation. Electrochemical impedance spectroscopy revealed low charge-transfer resistances at the semiconductor/catalyst and catalyst/electrolyte interfaces, and surface photoresponse measurements also demonstrated slow carrier recombination dynamics and consequently efficient charge carrier separation, providing further evidence for the superior performance. Our results suggest that chemically exfoliated 1T-MoS2/Si heterostructures are promising earth-abundant alternatives to photocathodes based on noble metal catalysts for solar-driven hydrogen production.
    Journal of the American Chemical Society 06/2014; 136(24). DOI:10.1021/ja5025673 · 11.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective control of phase growth under harsh conditions (such as high temperature, highly conductive liquids or high growth rate), where surfactants are unstable or ineffective, is still a long-standing challenge. Here we show a general approach for rapid control of diffusional growth through nanoparticle self-assembly on the fast-growing phase during cooling. After phase nucleation, the nanoparticles spontaneously assemble, within a few milliseconds, as a thin coating on the growing phase to block/limit diffusion, resulting in a uniformly dispersed phase orders of magnitude smaller than samples without nanoparticles. The effectiveness of this approach is demonstrated in both inorganic (immiscible alloy and eutectic alloy) and organic materials. Our approach overcomes the microstructure refinement limit set by the fast phase growth during cooling and breaks the inherent limitations of surfactants for growth control. Considering the growing availability of numerous types and sizes of nanoparticles, the nanoparticle-enabled growth control will find broad applications.
    Nature Communications 05/2014; 5:3879. DOI:10.1038/ncomms4879 · 10.74 Impact Factor