Helen Liapis

Washington University in St. Louis, San Luis, Missouri, United States

Are you Helen Liapis?

Claim your profile

Publications (106)398.45 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: The search for new therapies providing cardiorenal protection in chronic kidney disease (CKD) has led to treatments that combine conventional renin-angiotensin-aldosterone-system inhibitors with other drugs that exhibit potential in disease management. Methods: In rats made uremic by renal ablation, we examined the effects of addition of the endothelin-A receptor antagonist atrasentan to a previously examined combination of enalapril (angiotensin converting enzyme inhibitor) and paricalcitol (vitamin D receptor activator) on cardiac and renal parameters. The effects of the individual and combined drugs were examined after a 3-month treatment. Results: A decrease in systolic blood pressure, serum creatinine and proteinuria, and improvement of renal histology in uremic rats were attributed to enalapril and/or paricalcitol treatment; atrasentan alone had no effect. In heart tissue, individual treatment with the drugs blunted the increase in cardiomyocyte size, and combined treatment additively decreased cardiomyocyte size to normal levels. Perivascular fibrosis was blunted in uremic control rats with atrasentan or enalapril treatment. Conclusions: We found distinct cardiac and renal effects of atrasentan. Combination treatment with atrasentan, enalapril and paricalcitol provided positive effects on cardiac remodeling in uremic rats, whereas combination treatment did not offer further protective effects on blood pressure, proteinuria or renal histology. © 2014 S. Karger AG, Basel.
    Kidney and Blood Pressure Research 09/2014; 39(4):340-352. · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 12th Banff Conference on Allograft Pathology was held in Comandatuba, Brazil, from August 19-23, 2013, and was preceded by a 2-day Latin American Symposium on Transplant Immunobiology and Immunopathology. The meeting was highlighted by the presentation of the findings of several working groups formed at the 2009 and 2011 Banff meetings to: (1) establish consensus criteria for diagnosing antibody-mediated rejection (ABMR) in the presence and absence of detectable C4d deposition; (2) develop consensus definitions and thresholds for glomerulitis (g score) and chronic glomerulopathy (cg score), associated with improved inter-observer agreement and correlation with clinical, molecular and serological data; (3) determine whether isolated lesions of intimal arteritis ("isolated v") represent acute rejection similar to intimal arteritis in the presence of tubulointerstitial inflammation; (4) compare different methodologies for evaluating interstitial fibrosis and for performing/evaluating implantation biopsies of renal allografts with regard to reproducibility and prediction of subsequent graft function; and (5) define clinically and prognostically significant morphologic criteria for subclassifying polyoma virus nephropathy. The key outcome of the 2013 conference is defining criteria for diagnosis of C4d-negative ABMR and respective modification of the Banff classification. In addition, three new Banff Working Groups were initiated.
    American Journal of Transplantation 02/2014; 14(2):272. · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vasculitides includes a heterogeneous group of disorders with the common histologic findings of vascular wall inflammation. Systemic or localized disease (e.g., renal vasculitis) has serious consequences. The incidence of isolated gynecologic vasculitis diagnosed on pathology specimens and its significance is little known. We performed a 20 year retrospective review including 53 cases with vasculitis diagnosis affecting the female genital tract identified in pathology reports. None had prior symptoms or were diagnosed with generalized vasculitis, while one patient had prior diagnosis of fibromyalgia. Most patients presented with abnormal bleeding and were treated for conditions unrelated to vasculitis. The different types of vasculitis were: predominantly lymphocytic (nonspecific) 30 cases, necrotizing 17 cases and granulomatous 6 cases. Only 2 patients had additional serologic tests. None of the patients with isolated gynecologic vasculitis received corticosteroids or additional treatment related to the vasculitis. None of the patients developed systemic vasculitis at follow-up (2 month to 19.5 years; mean, 5.5 years). Isolated gynecologic vasculitis diagnosed on pathology slides is rarely associated with systemic vasculitis. Potential isolated gynecologic vasculitis causes include: previous surgical interventions and vascular inflammation secondary to local neoplasm. In almost all cases, clinicians did not perform a thorough laboratory analysis to exclude systemic vasculitis and therapy was not required in any case, suggesting minimal clinical significance.
    Annals of Diagnostic Pathology. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular crescents are typically inflammatory and associated with rapidly progressive glomerulonephritis. Their pathogenesis involves glomerular basement membrane rupture due to circulating or intrinsic factors. Crescents associated with diabetic glomerulosclerosis are rarely reported. Furthermore, the nature of cells forming crescents in diabetes is unknown. To investigate the nature of crescents in diabetes, we examined renal biopsies from diabetic patients with nodular glomerulosclerosis and crescents (n = 2), diabetes without crescents (n = 5), nondiabetic renal biopsies (n = 3), and crescentic glomerulonephritis with inflammatory crescents (n = 5). Electron microscopy and confocal immunofluorescence analysis with antibodies against nephrin (a podocyte marker) and claudin 1 (parietal epithelial cell marker) were performed. Diabetic glomeruli with crescents contained a mixture of crescentic cells expressing either claudin 1 (11 ± 1.4 cells/glomerulus) or nephrin (5.5 ± 3.0 cells/glomerulus). Rare crescentic cells coexpressed nephrin and claudin 1 (2.5 ± 1.6 cells/glomerulus). In contrast, inflammatory crescents were almost exclusively composed of claudin 1–positive cells (25 ± 5.3 cells/glomerulus). Cells coexpressing claudin 1 and nephrin were absent in inflammatory crescents and all cases without crescents. Electron microscopy showed podocyte bridge formation between the glomerular basement membrane and parietal basement membrane but no glomerular basement membrane rupture as in inflammatory crescents. Crescents in diabetes may occur in diabetes in the absence of a secondary etiology and are composed of a mixture of parietal epithelial cells and visceral podocytes. Cells coexpressing parietal epithelial and podocyte markers suggest that parietal epithelial cells may transdifferentiate into podocytes in response to severe glomerular injury.
    Human pathology 01/2014; 45(3):628–635. · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of hyperphosphatemia in the pathogenesis of secondary hyperparathyroidism, cardiovascular disease, and progression of renal failure is widely known. Here we studied effects of dietary phosphate restriction on mortality and vascular calcification in uremic rats. Control and uremic rats were fed a high-phosphate diet and at 3 months a portion of rats of each group were killed. Serum phosphate and the calcium phosphate product increased in uremic rats, as did aortic calcium. Of the rats, 56% had positive aortic staining for calcium (von Kossa), RUNX2, and osteopontin. The remaining uremic rats were continued on diets containing high phosphate without and with sevelamer, or low phosphate, and after 3 more months they were killed. Serum phosphate was highest in uremic rats on high phosphate. Serum PTH and FGF-23 were markedly lower in rats on low phosphate. Mortality on high phosphate was 71.4%, with sevelamer reducing this to 37.5% and phosphate restriction to 5.9%. Positive aortic staining for von Kossa, RUNX2, and osteopontin was increased, but phosphate restriction inhibited this. Kidneys from low-phosphate and sevelamer-treated uremic rats had less interstitial fibrosis, glomerulosclerosis, and inflammation than those of uremic rats on high phosphate. Importantly, kidneys from rats on low phosphate showed improvement over kidneys from high-phosphate rats at 3 months. Left ventricles from rats on low phosphate had less perivascular fibrosis and smaller cardiomyocyte size compared to rats on high phosphate. Thus, intensive phosphate restriction significantly reduces mortality in uremic rats with severe vascular calcification.Kidney International advance online publication, 9 October 2013; doi:10.1038/ki.2013.213.
    Kidney International 10/2013; · 8.52 Impact Factor
  • Helen Liapis, Sanjay Jain
    Journal of the American Society of Nephrology 09/2013; · 8.99 Impact Factor
  • Helen Liapis
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Electron microscopy (EM) has been an indispensable tool for kidney research since its inception more than half a century ago. Much of the substantial advances were propelled by the need to find methods to best visualize and analyze the kidney's structure deduced from the fundamental principle that has structure and function intimately related. The result of 3 decades of experimental kidney work between 1950 and 1980 coincided with remarkable advances in nephrology that marked a renaissance era for renal pathology and resulted in the morphologic classification of medical kidney diseases. In the era of genetics and molecular medicine TEM continues to contribute significant clinical and pathogenetic insights in kidney disease. The basic principles as applied to kidney disease experimental models are discussed with emphasis on crescent formation in Col4A3-deficient mice and a mouse model of experimental oxalosis (CaOx).
    Ultrastructural Pathology 07/2013; · 0.98 Impact Factor
  • Joseph P. Gaut, Helen Liapis
    [Show abstract] [Hide abstract]
    ABSTRACT: IgA dominant post-infectious glomerulonephritis is a relatively recently described entity that typically presents with acute kidney injury, haematuria and proteinuria. Pathologically, the renal biopsy shows variable light microscopic findings ranging from mesangial hypercellularity to diffuse proliferative glomerulonephritis, but characteristic dominant or co-dominant IgA deposits by immunofluorescence, and subepithelial “hump”-shaped electron dense deposits. The majority of cases are associated with Staphylococcal infections. It is the aim of this review to discuss the salient clinical and pathologic features of IgA dominant post-infectious glomerulonephritis based on our own experience and review of the literature. Diagnostic criteria and pathophysiologic disease mechanisms are discussed.
    Diagnostic Histopathology. 05/2013; 19(5):175–181.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We applied customized targeted next-generation exome sequencing (NGS) to determine if mutations in genes associated with renal malformations, Alport syndrome (AS) or nephrotic syndrome are a potential cause of renal abnormalities in patients with equivocal or atypical presentation. We first sequenced 4,041 exons representing 292 kidney disease genes in a Caucasian woman with a history of congenital vesicoureteral reflux (VUR), recurrent urinary tract infections and hydronephrosis who presented with nephrotic range proteinuria at the age of 45. Her biopsy was remarkable for focal segmental glomerulosclerosis (FSGS), a potential complication of longstanding VUR. She had no family history of renal disease. Her proteinuria improved initially, however, several years later she presented with worsening proteinuria and microhematuria. NGS analysis revealed two deleterious COL4A3 mutations, one novel and the other previously reported in AS, and a novel deleterious SALL2 mutation, a gene linked to renal malformations. Pedigree analysis confirmed that COL4A3 mutations were nonallelic and compound heterozygous. The genomic results in conjunction with subsequent abnormal electron microscopy, Collagen IV minor chain immunohistochemistry and progressive sensorineural hearing loss confirmed AS. We then modified our NGS approach to enable more efficient discovery of variants associated with AS or a subset of FSGS by multiplexing targeted exome sequencing of 19 genes associated with AS or FSGS in 14 patients. Using this approach, we found novel or known COL4A3 or COL4A5 mutations in a subset of patients with clinically diagnosed or suspected AS, APOL1 variants associated with FSGS in African Americans and novel mutations in genes associated with nephrotic syndrome. These studies demonstrate the successful application of targeted capture-based exome sequencing to simultaneously evaluate genetic variations in many genes in patients with complex renal phenotypes and provide insights into etiology of conditions with equivocal clinical and pathologic presentations.
    PLoS ONE 01/2013; 8(10):e76360. · 3.53 Impact Factor
  • Helen Liapis, Joseph P Gaut
    [Show abstract] [Hide abstract]
    ABSTRACT: Renal biopsy was introduced in the 1950s. By 1980 the pathologic diagnostic criteria for the majority of medical kidney diseases known today, including pediatric diseases, were established using light, electron microscopy and immunohistochemistry. However, it has become clear that there are limitations in the morphologic evaluation, mainly because a given pattern of injury can be caused by different aetiologies and, conversely, a single aetiology may present with more than one histological pattern. An explosion in kidney disease research in the last 20-30 years has brought new knowledge from bench to bedside rapidly and resulted in new molecular and genetic tools that enhance the diagnostic and prognostic power of the renal biopsy. Genomic technologies such as polymerase chain reaction (PCR), in situ hybridization and oligonucleotide microarrays, collectively known as genomics, detect single or multiple genes underscoring the pathologic changes and revealing specific causes of injury that may require different treatment. The aims of this review are to (1) summarize current recommendations for diagnostic renal biopsies encompassing light microscopy, immunofluorescence or immunohistochemistry and electron microscopy; (2) address the limitations of morphology; (3) show current contributions of genomic technologies adjunct to the renal biopsy, and provide examples of how these may transform pathologic interpretation into molecular disease phenotypes.
    Pediatric Nephrology 11/2012; · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5 % of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.
    Human Genetics 06/2012; 131(11):1725-38. · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital renal dysplasia (RD) is a severe form of congenital renal malformation characterized by disruption of normal renal development with cyst formation, reduced or absent nephrons, and impaired renal growth. The authors previously identified that matrilysin (matrix metalloproteinase-7) was overexpressed in a microarray gene expression analysis of human RD compared to normal control kidneys. They now find that active matrilysin gene transcription and protein synthesis occur within dysplastic tubules and epithelial cells lining cysts in human RD by RT-PCR and immunohistochemistry. Similar staining patterns were seen in obstructed kidneys of pouch opossums that show histological features similar to that of human RD. In vitro, matrilysin inhibits formation of branching structures in mIMCD-3 cells stimulated by bone morphogenetic protein-7 (BMP-7) but does not inhibit hepatocyte growth factor-stimulated branching. BMP-7 signaling is essential for normal kidney development, and overexpression of catalytically active matrilysin in human embryonic kidney 293 cells reduces endogenous BMP-7 protein levels and inhibits phosphorylation of BMP-7 SMAD signaling intermediates. These findings suggest that matrilysin expression in RD may be an injury response that disrupts normal nephrogenesis by impairing BMP-7 signaling.
    Journal of Histochemistry and Cytochemistry 01/2012; 60(3):243-53. · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin-converting enzyme (ACE) inhibitors ameliorate the progression of renal disease. In combination with vitamin D receptor activators, they provide additional benefits. In the present study, uremic (U) rats were treated as follows: U+vehicle (UC), U+enalapril (UE; 25 mg/l in drinking water), U+paricalcitol (UP; 0.8 μg/kg ip, 3 × wk), or U+enalapril+paricalcitol (UEP). Despite hypertension in UP rats, proteinuria decreased by 32% vs. UC rats. Enalapril alone, or in combination with paricalcitol, further decreased proteinuria (≈70%). Glomerulosclerosis and interstitial infiltration increased in UC rats. Paricalcitol and enalapril inhibited this. The increase in cardiac atrial natriuretic peptide (ANP) seen in UC rats was significantly decreased by paricalcitol. Enalapril produced a more dramatic reduction in ANP. Renal oxidative stress plays a critical role in inflammation and progression of sclerosis. The marked increase in p22(phox), a subunit of NADPH oxidase, and decrease in endothelial nitric oxide synthase were inhibited in all treated groups. Cotreatment with both compounds inhibited the uremia-induced increase in proinflammatory inducible nitric oxide synthase (iNOS) and glutathione peroxidase activity better than either compound alone. Glutathione reductase was also increased in UE and UP rats vs. UC. Kidney 4-hydroxynonenal was significantly increased in the UC group compared with the normal group. Combined treatment with both compounds significantly blunted this increase, P < 0.05, while either compound alone had no effect. Additionally, the expression of Mn-SOD was increased and CuZn-SOD decreased by uremia. This was ameliorated in all treatment groups. Cotreatment with enalapril and paricalcitol had an additive effect in increasing CuZn-SOD expression. In conclusion, like enalapril, paricalcitol alone can improve proteinuria, glomerulosclerosis, and interstitial infiltration and reduce renal oxidative stress. The effects of paricalcitol may be amplified when an ACE inhibitor is added since cotreatment with both compounds seems to have an additive effect on ameliorating uremia-induced changes in iNOS and CuZn-SOD expression, peroxidase activity, and renal histomorphometry.
    AJP Renal Physiology 09/2011; 302(1):F141-9. · 4.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.
    Organogenesis 07/2011; 7(3):154-62. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 68-year old Caucasian male with a past medical history of human immunodeficiency virus (HIV) infection presented with acute oliguric renal failure and maculopapular rash. Renal biopsy demonstrated extensive foot process effacement as well as confluent small subepithelial electron-dense deposits, which is diagnostic of membranous glomerulonephritis. Subsequent serological tests showed venereal disease research laboratory test was positive in both serum and cerebral spinal fluid. Following penicillin treatment, the patient's creatinine returned to baseline 4 weeks later. Secondary membranous glomerulonephritis caused by syphilis in patients with HIV is discussed.
    International Urology and Nephrology 03/2011; 44(3):983-6. · 1.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocyte injury has been suggested to have a pivotal role in the pathogenesis of diabetic glomerulopathy. To glean insights into molecular mechanisms underlying diabetic podocyte injury, we generated temporal global gene transcript profiles of podocytes exposed to high glucose for a time interval of 1 or 2 weeks using microarrays. A number of genes were altered at both 1 and 2 weeks of glucose exposure compared with controls grown under normal glucose. These included extracellular matrix modulators, cell cycle regulators, extracellular transduction signals and membrane transport proteins. Novel genes that were altered at both 1 and 2 weeks of high-glucose exposure included neutrophil gelatinase-associated lipocalin (LCN2 or NGAL, decreased by 3.2-fold at 1 week and by 7.2-fold at 2 weeks), endothelial lipase (EL, increased by 3.6-fold at 1 week and 3.9-fold at 2 week) and UDP-glucuronosyltransferase 8 (UGT8, increased by 3.9-fold at 1 week and 5.0-fold at 2 weeks). To further validate these results, we used real-time PCR from independent podocyte cultures, immunohistochemistry in renal biopsies and immunoblotting on urine specimens from diabetic patients. A more detailed time course revealed changes in LCN2 and EL mRNA levels as early as 6 hours and in UGT8 mRNA level at 12 hours post high-glucose exposure. EL immunohistochemistry on human tissues showed markedly increased expression in glomeruli, and immunoblotting readily detected EL in a subset of urine samples from diabetic nephropathy patients. In addition to previously implicated roles of these genes in ischemic or oxidative stress, our results further support their importance in hyperglycemic podocyte stress and possibly diabetic glomerulopathy pathogenesis and diagnosis in humans.
    Laboratory Investigation 11/2010; 91(4):488-98. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutant forms of TRPC6 can activate NFAT-dependent transcription in vitro via calcium influx and activation of calcineurin. The same TRPC6 mutants can cause FSGS, but whether this involves an NFAT-dependent mechanism is unknown. Here, we generated mice that allow conditional induction of NFATc1. Mice with NFAT activation in nascent podocytes in utero developed proteinuria and glomerulosclerosis postnatally, resembling FSGS. NFAT activation in adult mice also caused progressive proteinuria and FSGS. Ultrastructural studies revealed podocyte foot process effacement and deposition of extracellular matrix. NFAT activation did not initially affect expression of podocin, synaptopodin, and nephrin but reduced their expression as glomerular injury progressed. In contrast, we observed upregulation of Wnt6 and Fzd9 in the mutant glomeruli before the onset of significant proteinuria, suggesting a potential role for Wnt signaling in the pathogenesis of NFAT-induced podocyte injury and FSGS. These results provide in vivo evidence for the involvement of NFAT signaling in podocytes, proteinuria, and glomerulosclerosis. Furthermore, this study suggests that NFAT activation may be a key intermediate step in the pathogenesis of mutant TRPC6-mediated FSGS and that suppression of NFAT activity may contribute to the antiproteinuric effects of calcineurin inhibitors.
    Journal of the American Society of Nephrology 10/2010; 21(10):1657-66. · 8.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. However, even if toxicity can be minimalized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets may be a strategy to overcome these supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] can obviate the need for immune suppression in rats or rhesus macaques. Here, in rats transplanted previously with E28 pig pancreatic primordia in the mesentery, we show normalization of glucose tolerance in nonimmune-suppressed streptozotocin-diabetic LEW rats and insulin and porcine proinsulin mRNA-expressing cell engraftment in the kidney following implantation of porcine islets beneath the renal capsule. Donor cell engraftment was confirmed using fluorescent in situ hybridization for the porcine X chromosome and electron microscopy. In contrast, cells from islets did not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in the mesentery. This is the first report of prolonged engraftment and sustained normalization of glucose tolerance following transplantation of porcine islets in nonimmune-suppressed, immune-competent rodents. The data are consistent with tolerance induction to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.
    American Journal Of Pathology 08/2010; 177(2):854-64. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of proximal nephron segments requires canonical Notch2 signaling, but other functions of Notch signaling during renal development are incompletely understood. Here, we report that proximal tubules forming with reduced Notch signaling, resulting from delayed conditional inactivation of Notch1 and/or Notch2, are prone to cyst formation and tubular epithelial stratification. Conditional inactivation of the DNA binding factor RBP-J, which mediates Notch signaling, also resulted in multiple congenital cysts arising from the proximal tubule. Moreover, a few stratified foci/microadenomas containing hyperproliferative cells, resembling precursors of papillary renal cell carcinoma, formed in these proximal tubules. Epithelial stratification correlated neither with reduced expression of the transcriptional regulator of ciliary proteins TCF2/HNF1beta nor with loss of apical-basal polarity. Instead, Notch signaling helped to restrict the orientation of epithelial mitotic spindles to a plane parallel to the basement membrane during nephron elongation. In the absence of Notch, random spindle orientation may explain the epithelial stratification and cyst formation. Furthermore, post hoc analysis of human class 1 papillary renal cell carcinoma revealed reduced Notch activity in these tumors, resulting from abundant expression of a potent inhibitor of canonical Notch signaling, KyoT3/FHL1B. In summary, these data suggest that canonical Notch signaling maintains the alignment of cell division in the proximal tubules during nephrogenesis and that perturbations in Notch signaling may lead to cystic renal disease and tumorigenesis.
    Journal of the American Society of Nephrology 04/2010; 21(5):819-32. · 8.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Traditional causes such as diabetes, smoking, aging and hypertension do not fully explain the high rate of morbidity from cardiovascular disease seen in these patients. The renin-angiotensin-aldosterone system (RAAS) regulates extracellular volume homeostasis, which contributes to blood pressure stability. Overactivity of this system is involved in the pathophysiology of cardio-renal disease. New evidence suggests that vitamin D receptor activators (VDRAs) have a suppressive effect on the RAAS; however, VDRAs also have anti-inflammatory and anti-fibrotic effects. We have demonstrated that paricalcitol, a VDRA, ameliorates left ventricular hypertrophy (LVH) in uremic rats by up-regulating the VDR, decreasing myocardial PCNA and also decreasing myocardial oxidative stress. Thus, paricalcitol can suppress the progression of LVH, myocardial and perivascular fibrosis and myocardial arterial vessel thickness presumably by up-regulating the VDR. Paricalcitol may prove to have a substantial beneficial effect on cardiac disease and its outcome in patients with CKD. Prospective randomized studies in CKD patients are necessary to confirm these results.
    The Journal of steroid biochemistry and molecular biology 03/2010; 121(1-2):188-92. · 3.98 Impact Factor

Publication Stats

3k Citations
398.45 Total Impact Points

Institutions

  • 1993–2014
    • Washington University in St. Louis
      • • Department of Pathology and Immunology
      • • Department of Medicine
      • • Department of Pediatrics
      San Luis, Missouri, United States
  • 1993–2012
    • University of Washington Seattle
      • • Department of Pediatrics
      • • Division of General Internal Medicine
      • • Department of Pathology
      • • Department of Immunology
      • • Department of Medicine
      Seattle, WA, United States
  • 2009
    • University of Arkansas at Little Rock
      Little Rock, Arkansas, United States
  • 1994–2009
    • Barnes Jewish Hospital
      San Luis, Missouri, United States
  • 2002
    • Evangelismos Hospital
      Athínai, Attica, Greece