Liise-anne Pirofski

Albert Einstein College of Medicine, New York City, New York, United States

Are you Liise-anne Pirofski?

Claim your profile

Publications (89)517.35 Total impact

  • Soma Rohatgi, L Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: Accepted
    Future Microbiology 10/2014; · 4.02 Impact Factor
  • The Journal of infectious diseases. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection in immunized mice against infection with a virulent strain. This work will contribute to understand the role of these structures in important biological processes such as host-pathogen interactions and prevention of human disease.
    Journal of proteomics 04/2014; · 5.07 Impact Factor
  • Joshua Vernatter, Liise-Anne Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: Infection with Streptococcus pneumoniae (pneumococcus) results in colonization, which can lead to local or invasive disease, of which pneumonia is the most common manifestation. Despite the availability of pneumococcal vaccines, pneumococcal pneumonia is the leading cause of community and inhospital pneumonia in the United States and globally. This article discusses new insights into the pathogenesis of pneumococcal disease. RECENT FINDINGS: The host-microbe interactions that determine whether pneumococcal colonization will result in clearance or invasive disease are highly complex. This article focuses on new information in three areas that bear on the pathogenesis of pneumococcal disease: factors that govern colonization, the prelude to invasive disease, including effects on colonization and invasion of capsular serotype, pneumolysin, surface proteins that regulate complement deposition, biofilm formation and agglutination; the effect of coinfection with other bacteria and viruses on pneumococcal growth and virulence, including the synergistic effect of influenza virus; and the contribution of the host inflammatory response to the pathogenesis of pneumococcal pneumonia, including the effects of pattern recognition molecules, cells that enhance and modulate inflammation, and therapies that modulate inflammation, such as statins. SUMMARY: Recent research on pneumococcal pathogenesis reveals new mechanisms by which microbial factors govern the ability of pneumococcus to progress from the state of colonization to disease and host inflammatory responses contribute to the development of pneumonia. These mechanisms suggest that therapies which modulate the inflammatory response could hold promise for ameliorating damage stemming from the host inflammatory response in pneumococcal disease.
    Current Opinion in Infectious Diseases 04/2013; · 4.87 Impact Factor
  • Arturo Casadevall, Liise-Anne Pirofski
    Future Microbiology 02/2013; 8:135-7. · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Bruton's tyrosine kinase (Btk) is a signaling molecule that plays important roles in B-1 B cell development and innate myeloid cell functions and has recently been identified as a target for therapy of B cell lymphomas. We examined the contribution of B-1 B cells to resistance to Cryptococcus neoformans infection by utilizing X-linked immunodeficient (XID) mice (CBA-CaHN-XID), which possess a mutation in Btk. XID mice had significantly higher brain fungal burdens than the controls 6 weeks after infection with C. neoformans strain 52D (CN52D); however, consistent with the propensity for greater virulence of C. neoformans strain H99 (CNH99), CNH99-infected XID mice had higher lung and brain fungal burdens than the controls 3 weeks after infection. Further studies in a chronic CN52D model revealed markedly lower levels of total and C. neoformans-specific serum IgM in XID mice than in the control mice 1 and 6 weeks after infection. Alveolar macrophage phagocytosis was markedly impaired in CN52D-infected XID mice compared to the controls, with XID mice exhibiting a disorganized lung inflammatory pattern in which Gomori silver staining revealed significantly more enlarged, extracellular C. neoformans cells than the controls. Adoptive transfer of B-1 B cells to XID mice restored peritoneal B-1 B cells but did not restore IgM levels to those of the controls and had no effect on the brain fungal burden at 6 weeks. Taken together, our data support the hypothesis that IgM promotes fungal containment in the lungs by enhancing C. neoformans phagocytosis and restricting C. neoformans enlargement. However, peritoneal B-1 B cells are insufficient to reconstitute a protective effect in the lungs. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton's tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis.
    mBio 01/2013; 4(4). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4(+) T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4(+) T cell decline, and nadir CD4(+) T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. IMPORTANCE HIV-associated CD4(+) T cell deficiency is a sine qua non for HIV-associated cryptococcal disease (CD), but not all patients with CD4(+) T cell deficiency develop CD despite serological evidence of previous infection. At present, there are no biomarkers that predict HIV-associated CD risk. The goal of our study was to understand whether Fc gamma receptor (FCGR) polymorphisms that have been shown to portend CD risk in HIV-uninfected people are associated with CD risk in HIV-infected people. Such biomarkers could identify those who would benefit most from targeted prophylaxis and/or earlier treatment, particularly in sub-Saharan Africa, where there are nearly a million cases of HIV-associated CD annually. A biomarker of risk could also identify potential candidates for immunization, should there be a vaccine for Cryptococcus neoformans.
    mBio 01/2013; 4(5). · 6.88 Impact Factor
  • Source
    Soma Rohatgi, Liise-Anne Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of B cells in host defense against fungi has been difficult to establish. We quantified and determined the molecular derivation of B-1a, B-1b, and B-2 B cell populations in C57BL/6 mice after pulmonary infection with Cryptococcus neoformans. Total B-1 and B-2 cell numbers increased in lungs and peritoneal cavity as early as day 1 postinfection, but lacked signs of clonal expansion. Labeled capsular (24067) and acapsular (Cap67) C. neoformans strains were used to identify C. neoformans-binding B cell subsets by flow cytometry. Peritoneal cavity B-1a B cells exhibited the most acapsular and capsular C. neoformans binding in C. neoformans-infected mice, and C. neoformans-selected B-1 B cells secreted laminarin- and C. neoformans-binding IgM. Single-cell PCR-based sequence analysis of B-1a, B-1b, and B-2 cell IgH V region H chain (V(H)) genes revealed increased usage of V(H)11 and V(H)12, respectively, in acapsular and capsular C. neoformans-selected B-1a cells. Germline V(H) segments were used, with capsular C. neoformans-selected cells having less junctional diversity than acapsular C. neoformans-selected cells. Further studies in B-1 B cell-depleted mice showed that these mice had higher brain and lung fungal burdens and less alveolar macrophage phagocytosis of C. neoformans than did control and B-1a B cell-reconstituted mice. Taken together, these results establish a mechanistic role for B-1 B cells in the innate B cell response to pulmonary infection with C. neoformans and reveal that IgM-producing B-1a cells, which express germline V(H) genes, bind C. neoformans and contribute to early fungal clearance. Thus, B-1a B cells provide a first line of defense during pulmonary C. neoformans infection in mice.
    The Journal of Immunology 11/2012; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B7x (B7-H4 or B7S1), a member of the B7 family, inhibits in vitro T cell proliferation and cytokine production by binding to an unidentified receptor on activated T cells, but its in vivo function remains largely unclear. We show that B7x protein was expressed in epithelial cells of the lung, but not in lymphoid tissues. To investigate the role of B7x in the lung, we determined the susceptibility of B7x-deficient (B7x(-/-)) mice to a lethal pulmonary infection with Streptococcus pneumoniae. B7x(-/-), but not B7-H3-deficient, mice were significantly more resistant to S. pneumoniae pulmonary infection than their wild-type (Wt) counterparts. B7x(-/-) mice had significantly lower bacterial burdens and levels of inflammatory cytokines in lungs as early as 12 h postinfection. They also had milder immunopathology that was localized in alveolar spaces, whereas Wt mice had severe inflammation that was perivascular. Control of infection in B7x(-/-) mice was associated with a marked increase in activated CD4 and CD8 T cells and fewer neutrophils in lungs, whereas the susceptible Wt mice had the opposite cellular profile. In B7x(-/-)Rag1(-/-) mice that lack T cells, reduction in bacterial burden was no longer observed. Control of S. pneumoniae and the increased survival observed was specific to the lung, because systemically infected B7x(-/-) mice were not resistant to infection. These data indicate that lung-expressed B7x negatively regulates T cells, and that in its absence, in B7x(-/-) mice, an enhanced T cell response contributed to reduced lethality in a pulmonary infection model with S. pneumoniae.
    The Journal of Immunology 08/2012; 189(6):3054-63. · 5.52 Impact Factor
  • Source
    Arturo Casadevall, Liise-Anne Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: Only two decades ago antibodies to fungi were thought to have little or no role in protection against fungal diseases. However, subsequent research has provided convincing evidence that certain antibodies can modify the course of fungal infection to the benefit or detriment of the host. Hybridoma technology was the breakthrough that enabled the characterization of antibodies to fungi, illuminating some of the requirements for antibody efficacy. As discussed in this review, fungal-specific antibodies mediate protection through direct actions on fungal cells and through classical mechanisms such as phagocytosis and complement activation. Although mechanisms of antibody-mediated protection are often species-specific, numerous fungal antigens can be targeted to generate vaccines and therapeutic immunoglobulins. Furthermore, the study of antibody function against medically important fungi has provided fresh immunological insights into the complexity of humoral immunity that are likely to apply to other pathogens.
    Cell host & microbe 05/2012; 11(5):447-56. · 13.02 Impact Factor
  • Source
    Wendy A Szymczak, Rani S Sellers, Liise-anne Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytokines IL-23 and IL-17 have been implicated in resistance to cryptococcal disease, but it is not clear whether IL-23-mediated production of IL-17 promotes fungal containment following pulmonary challenge with Cryptococcus neoformans. We used mice lacking IL-23 (IL-23p19(-/-)) or IL-17RA (IL-17RA(-/-)), and wild type (WT) C57BL/6 mice to examine the IL-23/IL-17 axis after intranasal infection with the C. neoformans strain 52D. The absence of IL-23 or IL-17RA had no effect on pulmonary or brain fungal burden at 1 or 6 weeks after infection. However, survival of IL-23p19(-/-) mice was reduced compared to IL-17RA(-/-) mice. IL-I7 production by CD4 T cells and natural killer T (NKT) cells was impaired in IL-23p19(-/-) lungs, but was not completely abolished. Both IL-23p19(-/-) and IL-17RA(-/-) mice exhibited impaired neutrophil recruitment, increased serum levels of IgE and IgG2b, and increased deposition of YM1/YM2 crystals in the lung, but only IL-23p19(-/-) mice developed persistent lung eosinophilia. Although survival of IL-17RA(-/-) and WT mice was similar after 17 weeks of infection, only surviving IL-17RA(-/-) mice exhibited cryptococcal dissemination to the blood. These data demonstrate that IL-23 dampens the allergic response to cryptococcal infection through IL-17-independent suppression of eosinophil recruitment and IL-17-dependent regulation of antibody production and crystal deposition. Furthermore, IL-23, and to a lesser extent IL-17, contribute to disease resistance.
    American Journal Of Pathology 02/2012; 180(4):1547-59. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial pneumonia risk is disproportionately high among those infected with HIV. This risk is present across all CD4(+) T-cell levels (TCLs), suggesting that additional factors govern susceptibility. This study examines CD8(+) TCLs and risk for HIV-associated bacterial pneumonia and all-cause mortality. Demographic, clinical, and laboratory data were obtained for 885 HIV-infected women enrolled in the HIV Epidemiologic Research Study (HERS). Bacterial pneumonia cases were identified using clinical, microbiological, and radiographic criteria. CD8(+) TCLs were assessed at 6-month intervals. Statistical methods included Cox proportional hazards regression modeling and covariate-adjusted survival estimates. Relative to a referent CD8(+) TCL of 401-800 cells per cubic millimeter, risk for bacterial pneumonia was significantly higher when CD8(+) TCLs were <400 (hazard ratio 1.65, P = 0.017, 95% confidence interval 1.10 to 2.49), after adjusting for age, CD4(+) TCL, viral load, and antiretroviral use. There was also a significantly higher risk of death when CD8(+) TCLs were ≤400 cells per cubic millimeter (hazard ratio 1.45, P = 0.04, 95% confidence interval 1.02 to 2.06). Covariate-adjusted survival estimates revealed shorter time to pneumonia and death in this CD8(+) TCL category, and the overall associations of the categorized CD8(+) TCL with bacterial pneumonia and all-cause mortality were each statistically significant (P = 0.017 and P < 0.0001, respectively). CD8(+) TCL ≤400 cells per cubic millimeter was associated with increased risk for pneumonia and all-cause mortality in HIV-infected women in the HERS cohort, suggesting that CD8(+) TCL could serve as an adjunctive biomarker of pneumonia risk and mortality in HIV-infected individuals.
    JAIDS Journal of Acquired Immune Deficiency Syndromes 02/2012; 60(2):191-8. · 4.65 Impact Factor
  • Source
    Sarah Weber, Haijun Tian, Nico van Rooijen, Liise-Anne Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies to pneumococcal capsular polysaccharide (PPS) are required for PPS-based vaccine-mediated protection against Streptococcus pneumoniae. Previous work established that 1E2, a mouse IgG1 to PPS3 that does not induce serotype 3 (ST3) S. pneumoniae killing by phagocytes in vitro, protects mice from death after intranasal infection with ST3, but its efficacy was abrogated in FcγR (F common gamma receptor)-deficient mice. In this study, we determined whether 1E2 efficacy against pulmonary ST3 infection requires FcγRIII. 1E2 did not protect FcγRIII-deficient (FcγRIII(-/-)) mice. Studies of the mechanism of 1E2-mediated effects showed that it resulted in a marked reduction in lung inflammation in ST3-infected wild-type (Wt [C57BL/6]) mice that was abrogated in FcγRIII(-/-) mice. 1E2 had no effect on early bacterial clearance in the lungs of ST3-infected Wt, FcγRIIB(-/-), or FcγRIII(-/-) mice, but it reduced levels of bacteremia and serum macrophage inflammatory protein-2) (MIP-2), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in Wt and FcγRIIB(-/-) mice, strains in which it is protective. As previous work showed that neutrophils were dispensable for 1E2 efficacy, we investigated whether macrophages are required for 1E2 efficacy against intranasal infection with ST3 and found that its efficacy was abrogated in Wt mice depleted of macrophages intranasally. In vitro studies revealed that1E2 promoted ST3 internalization by naïve alveolar macrophages but did not induce early intracellular killing. Macrophages from 1E2-treated ST3-infected mice studied ex vivo exhibited more apoptosis than those from FcγRIII(-/-) mice. These findings suggest that 1E2 mediates protection against ST3 in mice by affecting the inflammatory response, perhaps in part via macrophage apoptosis, rather than by inducing early bacterial clearance.
    Infection and immunity 01/2012; 80(4):1314-22. · 4.21 Impact Factor
  • Source
    Liise-anne Pirofski, Arturo Casadevall
    BMC Biology 01/2012; 10:6. · 7.43 Impact Factor
  • Kieren A Marr, Kausik Datta, Liise-anne Pirofski, Robert Barnes
    Clinical Infectious Diseases 11/2011; 54(1):153-4. · 9.37 Impact Factor
  • Source
    Beza Seyoum, Masahide Yano, Liise-anne Pirofski
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteremic pneumonia with some pneumococcal capsular serotypes, including serotype 3 (ST3), has been associated with a higher risk of death, whereas others, such as ST8, are associated with a lower risk. To provide a molecular basis for understanding such differences, we used oligo cDNA microarrays to analyze and compare the gene expression profiles of the lungs of Balb/c mice infected intranasally with either ST3, strain A66.1, or ST8, strain ATCC 6308 (6308). Compared to uninfected controls, infection with either A66.1 or 6308 led to inoculum-dependent expression of IFN-γ inducible CXC chemokines among other pro-inflammatory genes. To investigate the role that IFN-γ inducible chemokines CXCL9, CXCL10 and CXCL11 play in A66.1- and 6308-induced pneumonia, we examined the effect of the absence of their common receptor, CXCR3, on intranasal infection in CXCR3(-/-) (Balb/c) mice. Compared to wild type (WT) mice, virulence of A66.1 but not 6308 was attenuated in CXCR3(-/-) mice. A66.1-infected CXCR3(-/-) mice had fewer lung neutrophils and more alveolar macrophages 48 h after infection and fewer blood CFU 72 h after infection. Histopathological examination of lung sections revealed less inflammation among A66.1-infected CXCR3(-/-) than WT mice. The reduced virulence of A66.1 in CXCR3(-/-) mice suggests that inhibition of the functional activity of IFN-γ inducible chemokines modulates the host response to A66.1, in turn suggesting a novel approach to improve vaccine-mediated protection against ST3 pneumonia.
    Vaccine 08/2011; 29(45):8002-11. · 3.77 Impact Factor
  • Source
    Arturo Casadevall, Ferric C Fang, Liise-Anne Pirofski
    PLoS Pathogens 07/2011; 7(7):e1002136. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we used a previously described method of controlling gene expression with computer-based gene design and de novo DNA synthesis to attenuate the virulence of Streptococcus pneumoniae. We produced 2 S. pneumoniae serotype 3 (SP3) strains in which the pneumolysin gene (ply) was recoded with underrepresented codon pairs while retaining its amino acid sequence and determined their ply expression and pneumolysin production in vitro and their virulence in a mouse pulmonary infection model. Expression of ply and production of pneumolysin of the recoded SP3 strains were decreased, and the recoded SP3 strains were less virulent in mice than the wild-type SP3 strain or a Δply SP3 strain. Further studies showed that the least virulent recoded strain induced a markedly reduced inflammatory response in the lungs compared with the wild-type or Δply strain. These findings suggest that reducing pneumococcal virulence gene expression by altering codon-pair bias could hold promise for rational design of live-attenuated pneumococcal vaccines.
    The Journal of Infectious Diseases 02/2011; 203(9):1264-73. · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pneumococcal disease continues to cause substantial morbidity and mortality among the elderly. Older adults may have high levels of anticapsular antibody after vaccination, but their antibodies show decreased functional activity. In addition, the protective effect of the pneumococcal polysaccharide vaccine (PPV) seems to cease as early as 3 to 5 years postvaccination. Recently, it was suggested that PPV elicits human antibodies that use predominantly V(H)3 gene segments and induce a repertoire shift with increased V(H)3 expression in peripheral B cells. Here we compared V(H)3-idiotypic antibody responses in middle-aged and elderly subjects receiving PPV as initial immunization or revaccination. We studied pre- and postvaccination sera from 36 (18 vaccine-naïve and 18 previously immunized subjects) middle-aged and 40 (22 vaccine-naïve and 18 previously immunized subjects) elderly adults who received 23-valent PPV. Concentrations of IgGs to four individual serotypes (6B, 14, 19F, and 23F) and of V(H)3-idiotypic antibodies (detected by the monoclonal antibody D12) to the whole pneumococcal vaccine were determined by enzyme-linked immunosorbent assay (ELISA). PPV elicited significant IgG and V(H)3-idiotypic antibody responses in middle-aged and elderly subjects, regardless of whether they were vaccine naïve or undergoing revaccination. Age did not influence the magnitude of the antibody responses, as evidenced by similar postvaccination IgG and V(H)3 antibody levels in both groups, even after stratifying by prior vaccine status. Furthermore, we found similar proportions (around 50%) of elderly and middle-aged subjects experiencing 2-fold increases in V(H)3 antibody titers after vaccination. Age or repeated immunization does not appear to affect the V(H)3-idiotypic immunogenicity of PPV among middle-aged and elderly adults.
    Clinical and vaccine Immunology: CVI 01/2011; 18(3):362-6. · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two different Streptococcus pneumoniae serotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotype in vitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells. IMPORTANCE: Current thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology of Streptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.
    mBio 01/2011; 2(5). · 6.88 Impact Factor

Publication Stats

2k Citations
517.35 Total Impact Points


  • 1995–2014
    • Albert Einstein College of Medicine
      • • Department of Microbiology & Immunology
      • • Infectious Diseases
      • • Department of Medicine
      New York City, New York, United States
  • 2012
    • VU University Medical Center
      Amsterdamo, North Holland, Netherlands
  • 2007
    • Harvard Medical School
      • Department of Pathology
      Boston, Massachusetts, United States