Robert Z Stodilka

Lawson Health Research Institute, London, Ontario, Canada

Are you Robert Z Stodilka?

Claim your profile

Publications (43)116.48 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Purpose: Attenuation correction for whole-body PET/MRI is challenging. Most commercial systems compute the attenuation map from MRI using a four-tissue segmentation approach. Bones, the most electron-dense tissue, are neglected because they are difficult to segment. In this work, the authors build on this segmentation approach by adding bones using a registration technique and assessing its performance on human PET images.Methods: Twelve oncology patients were imaged with FDG PET/CT and MRI using a Turbo-FLASH pulse sequence. A database of 121 attenuation correction quality CT scans was also collected. Each patient MRI was compared to the CT database via weighted heuristic measures to find the "most similar" CT in terms of body geometry. The similar CT was aligned to the MRI with a deformable registration method. Two MRI-based attenuation maps were computed. One was a standard four-tissue segmentation (air, lung, fat, and lean tissue) using basic image processing techniques. The other was identical, except the bones from the aligned CT were added. The PET data were reconstructed with the patient's CT-based attenuation map (the silver standard) and both MRI-based attenuation maps. The relative errors of the MRI-based attenuation corrections were computed in 14 standardized volumes of interest, in lesions, and over whole tissues. The squared Pearson correlation coefficient was also calculated over whole tissues. Statistical testing was done with ANOVAs and paired t-tests.Results: The MRI-based attenuation correction ignoring bone had relative errors ranging from -37% to -8% in volumes of interest containing bone. By including bone, the magnitude of the relative error was reduced in all cases ( p < 0.001), ranging from -3% to 4%. Further, the relative error in volumes of interest adjacent to bone was improved from a mean of -7.5% to 2% ( p < 0.001). In the other seven volumes of interest, including bone reduced the magnitude of relative error in three cases ( p < 0.001), had no effect in three cases, and increased relative error in one case. There was no statistically significant difference in the relative error in lesions. Over whole tissues, including bone slightly increased relative error in lung from 7.7% to 8.0% ( p = 0.002), in fat from 8.5% to 9.2%( p < 0.001), and in lean tissue from -2.1% to 2.6% ( p < 0.001), but reduced the magnitude of relative error in bone from -14.6% to 1.3% ( p < 0.001). The correlation coefficient was essentially unchanged in all tissues regardless of whether bone was included or not.Conclusions: The approach to include bones in MRI-based attenuation maps described in this work improves quantification of whole-body PET images in and around bony anatomy. The reduction in error is often large (tens of percents), and could alter image interpretation and subsequent patient care. Changes in other parts of the PET image are minimal and likely not of clinical significance.
    Medical Physics 08/2013; 40(8):082509. · 2.91 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Attenuation correction (AC) in PET/MRI is difficult as there is no clear relationship between MR signal and 511 keV attenuation coefficients (μ) as there is with CT. One approach is to register a pre-defined atlas of μ to the PET/MRI for AC. However, the design of the atlas may strongly influence the quantitative accuracy of the AC. Here we compare 3 different atlas design approaches and evaluate their performance in an oncology patient population. The 3 strategies were: use of BMI-dependent atlases; use of gender-dependent atlases, and use of a gender- and sex-independent atlas. Seventeen patients were imaged with FDG PET/CT and subsequently scanned with 3T MRI. MR and PET/CT images were coregistered, CT scans converted to μ-maps, and the resulting MRI/μ-map paired data were used to construct 6 atlases: averaged male and female atlases, averaged BMI-specific atlases (obese >30, overweight 25-29.9, Normal 18.5-24.9), and a single atlas comprised of all patients averaged together. The atlases were then used for PET AC for patients not included in the construction of the atlas in a leave-one-out manner. Resulting PET images were compared to each other and to the gold-standard CT-based PET reconstructions across all voxels and tissue-specific regions (soft-tissue, bone, lung). Sex-specific atlases yielded best results (average relative percent error over the 3 VOIs = 0.4509) & BMI-based atlases yielded highest average relative percent error at 0.9340. In all cases, highest errors were in the VOIs located in the livers.
    Medical Physics 07/2012; 39(7):4641. · 2.91 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Stem cell transplantation following AMI has shown promise for the repair or reduction of the amount of myocardial injury. There is some evidence that these treatment effects appear to be directly correlated to cell residence time. This study aims to assess the effects of (a) the timing of stem cell injection following myocardial infarction, and (b) flow milieu, on cell residence times at the site of transplantation by comparing three time points (day of infarction, week 1 and week 4-5), and two models of acute myocardial infarction (sustained occlusion or reperfusion). Twenty-one dogs received 2 injections of 30 million endothelial progenitor cells. The first injections were administered by epicardial (n = 8) or endocardial injection (n = 13) either on the day of infarction (n = 15) or at 1 week (n = 6). The second injections were administered by only endocardial injection (n = 18) 4 weeks following the first injection. Cell clearance half-lives were comparable between early and late injections. However, transplants into sustained occlusion infarcts resulted in slower cell clearance 77.1 ± 6.1 (n = 18) versus reperfused 59.4 ± 2.9 h (n = 21) p = 0.009. Sustained occlusion infarcts had longer cell retention in comparison to reperfusion whereas the timing of injection did not affect clearance rates. If the potential for myocardial regeneration associated with cell transplantation is, at least in part, linked to cell residence times, then greater benefit may be observed with transplants into infarcts associated with persistent coronary artery occlusion.
    The international journal of cardiovascular imaging 06/2012; · 2.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Present attenuation-correction algorithms in whole-body PET/MRI do not consider variations in lung density, either within or between patients; this may adversely affect accurate quantification. In this work, a technique to incorporate patient-specific lung density information into MRI-based attenuation maps is developed and compared with an approach that assumes uniform lung density. Five beagles were scanned with (18)F-FDG PET/CT and MRI. The relationship between MRI and CT signal in the lungs was established, allowing the prediction of attenuation coefficients from MRI. MR images were segmented into air, lung, and soft tissue and converted into attenuation maps, some with constant lung density and some with patient-specific lung densities. The resulting PET images were compared by both global metrics of quantitative fidelity (accuracy, precision, and root mean squared error) and locally with relative error in volumes of interest. A linear relationship was established between MRI and CT signal in the lungs. Constant lung density attenuation maps did not perform as well as patient-specific lung density attenuation maps, regardless of what constant density was chosen. In particular, when attenuation maps with patient-specific lung density were used, precision, accuracy, and root mean square error improved in lung tissue. In volumes of interest placed in the lungs, relative error was significantly reduced from a minimum of 12% to less than 5%. The benefit extended to tissues adjacent to the lungs but became less important as distance from the lungs increased. A means of using MRI to infer patient-specific attenuation coefficients in the lungs was developed and applied to augment whole-body MRI-based attenuation maps. This technique has been shown to improve the quantitative fidelity of PET images in the lungs and nearby tissues, compared with an approach that assumes uniform lung density.
    Journal of Nuclear Medicine 05/2012; 53(6):977-84. · 5.77 Impact Factor
  • Contrast Media & Molecular Imaging 01/2012; · 2.87 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A challenge with cardiac cell therapy is determining the location of cells relative to infarct tissue. As cells are viable following ¹¹¹In-labeling, and first-pass CT imaging can identify regions of myocardial infarction, we evaluated the feasibility of a SPECT/CT system to localize cells relative to infarcted myocardium in a canine model. Ten canines underwent surgical ligation of the left-anterior-descending artery and endothelial progenitor cells labeled with ¹¹¹In-tropolone were transplanted endocardially or epicardially. SPECT/CT was performed on day of transplantation, 4 and 10 days post-transplantation. For each imaging session first-pass perfusion CT was performed to delineate the area of reduced perfusion. SPECT and first-pass CT images were fused and evaluated. Contrast-to-noise ratios (CNR) were calculated for ¹¹¹In-SPECT images to evaluate cell detection. The zone of reduced perfusion was well delineated on first-pass perfusion CT in all canines. The ¹¹¹In signal was visualized within this zone in all cases. Analysis of the CNRs suggests that cells may be followed for 11 effective half-lives using the images from first-pass perfusion CT to provide the anatomic landmarks. In the setting of an acute myocardial infarction SPECT/[first-pass perfusion CT] is an effective hybrid platform for the localization of cells in relation to the area of reduced blood flow.
    Contrast Media & Molecular Imaging 01/2012; 7(1):76-84. · 2.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Hybrid imaging and mapping of the brain has been a growing area. This has been driven by: a) the complimentary information provided by different technologies and b) the growing awareness that functional, metabolic and molecular events often occur in times too short to be captured by sequential imaging by different modalities. To address these needs Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) have been integrated into one platform. To achieve this PET technology had to be significantly modified and MR technology appropriately adapted. The technical challenges that have been met and the future benefits anticipated will be presented.
    General Assembly and Scientific Symposium, 2011 XXXth URSI; 09/2011
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Attenuation correction (AC) is a critical step in the reconstruction of quantitatively accurate positron emission tomography (PET) and single photon emission computed tomography (SPECT) images. Several groups have proposed magnetic resonance (MR)-based AC algorithms for application in hybrid PET/MR systems. However, none of these approaches have been tested on SPECT data. Since SPECT/MR systems are under active development, it is important to ascertain whether MR-based AC algorithms validated for PET can be applied to SPECT. To investigate this issue, two imaging experiments were performed: one with an anthropomorphic chest phantom and one with two groups of canines. Both groups of canines were imaged from neck to abdomen, one with PET/CT and MR (n = 4) and the other with SPECT/CT and MR (n = 4), while the phantom was imaged with all modalities. The quality of the nuclear medicine reconstructions using MR-based attenuation maps was compared between PET and SPECT on global and local scales. In addition, the sensitivity of these reconstructions to variations in the attenuation map was ascertained. On both scales, it was found that the SPECT reconstructions were of higher fidelity than the PET reconstructions. Further, they were less sensitive to changes to the MR-based attenuation map. Thus, MR-based AC algorithms that have been designed for PET/MR can be expected to demonstrate improved performance when used for SPECT/MR.
    Physics in Medicine and Biology 07/2011; 56(14):4613-29. · 2.70 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an important foundation for future work, we have recently improved the experimental procedure allowing for a more densely populated imaging operator to be acquired. Subsets of the imaging operator were produced by varying the transducer count as well as the measurement space temporal sampling rate. Examination of the matrix rank and the effect of contributing object space singular vectors to image reconstruction were performed. For a PAI system collecting only limited data projections, matrix rank increased linearly with transducer count and measurement space temporal sampling rate. Image reconstruction using a regularized pseudoinverse of the imaging operator was performed on photoacoustic signals from a point source, line source, and an array of point sources derived from the imaging operator. As expected, image quality increased for each object with increasing transducer count and measurement space temporal sampling rate. Using the same approach, but on experimentally sampled photoacoustic signals from a moving point-like source, acquisition, data transfer, reconstruction and image display took 1.4 s using one laser pulse per 3D frame. With relatively simple hardware improvements to data transfer and computation speed, our current imaging results imply that acquisition and display of 3D photoacoustic images at laser repetition rates of 10Hz is easily achieved.
    Optics Express 07/2011; 19(14):13405-17. · 3.55 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Previous experiments with mice have shown that a repeated 1 h daily exposure to an ambient magnetic field shielded environment induces analgesia (anti-nociception). This shielding reduces ambient static and extremely low frequency magnetic fields (ELF-MF) by approximately 100 times for frequencies below 120 Hz. To determine the threshold of ELF-MF amplitude that would attenuate or abolish this effect, 30 and 120 Hz magnetic fields were introduced into the shielded environment at peak amplitudes of 25, 50, 100 and 500 nT. At 30 Hz, peak amplitudes of 50, 100, and 500 nT attenuated this effect in proportion to the amplitude magnitude. At 120 Hz, significant attenuation was observed at all amplitudes. Exposures at 10, 60, 100, and 240 Hz with peak amplitudes of 500, 300, 500, and 300 nT, respectively, also attenuated the induced analgesia. No exposure abolished this effect except perhaps at 120 Hz, 500 nT. If the peak amplitude frequency product was kept constant at 6000 nT-Hz for frequencies of 12.5, 25, 50, and 100 Hz, the extent of attenuation was constant, indicating that the detection mechanism is dependent on the nT-Hz product. A plot of effect versus the induced current metric nT-Hz suggests a threshold of ELF-MF detection in mice at or below 1000 nT-Hz.
    Bioelectromagnetics 03/2011; 32(7):561-9. · 2.02 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Quantum dots have been used in a wide variety of biomedical applications. A key advantage of these particles is that their optical properties depend predictably on size, which enables tuning of the emission wavelength. Recently, it was found that CdSe/ZnS quantum dots lose their ability to photoluminescence after exposure to gamma radiation (J. Phys. Chem. C., 113: 2580-2585 (2009). A method for readout of the loss of quantum dot photoluminescence during exposure to radiation could enable a multitude of real-time dosimetry applications. Here, we report on a method to image photoluminescence from quantum dots from a distance and under ambient lighting conditions. The approach was to construct and test a time-gated imaging system that incorporated pulsed illumination. The system was constructed from a pulsed green laser (Nd:YAG, 20 pulses/s, 5 ns pulse duration, ~5 mJ/pulse), a time-gated camera (LaVision Picostar, 2 ns gate width), and optical components to enable coaxial illumination and imaging. Using the system to image samples of equivalent concentration to the previous end-point work, quantum dot photoluminescence was measureable under ambient room lighting at a distance of 25 cm from the sample with a signal to background of 7.5:1. Continuous exposure of samples to pulsed laser produced no measureable loss of photoluminescence over a time period of one hour. With improvements to the light collection optics the range of the system is expected to increase to several metres, which will enable imaging of samples during exposure to a gamma radiation source.
    Proc SPIE 02/2011;
  • Medical Physics 01/2011; 38(6):3431-. · 2.91 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: How extremely low frequency (ELF) electromagnetic fields (such as power line exposure) impacts brain activity is today an intense area of research. One challenge is to unveil transduction mechanisms allowing ELF to interact with brain tissue. Thus, we present a cortical network model receiving internal and external stimuli. Using frequency analysis, we study how these stimuli durably modulate network dynamics depending on exposure duration, stimuli properties and transduction mechanisms. Our results indicate that these stimuli induce different responses in the frequency domain. Ultimately, such models might be useful in evaluating power line exposure thresholds, and in developing innovative brain stimulation methods.
    Neurocomputing. 01/2011; 74:2164-2175.
  • [show abstract] [hide abstract]
    ABSTRACT: Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of a 3D photoacoustic imaging system, and (ii) that reconstruction algorithms which favor sparseness can significantly improve imaging performance. These methodologies should provide a means to optimize detector count and geometry for a multitude of 3D photoacoustic imaging applications.
    Proc SPIE 06/2010;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Photoacoustic imaging is a hybrid imaging modality capable of producing contrast similar to optical imaging techniques but with increased penetration depth and resolution in turbid media by encoding the information as acoustic waves. In general, it is important to characterize the performance of a photoacoustic imaging system by parameters such as sensitivity, resolution, and contrast. However, system characterization can extend beyond these metrics by implementing advanced analysis via the crosstalk matrix and singular value decomposition. A method was developed to experimentally measure a matrix that represented the imaging operator for a photoacoustic imaging system. Computations to produce the crosstalk matrix were completed to provide insight into the spatially dependent sensitivity and aliasing for the photoacoustic imaging system. Further analysis of the imaging operator was done via singular value decomposition to estimate the capability of the imaging system to reconstruct objects and the inherent sensitivity to those objects. The results provided by singular value decomposition were compared to SVD results from a de-noised imaging operator to estimate the number of measurable singular vectors for the system. These characterization techniques can be broadly applied to any photoacoustic system and, with regards to the studied system, could be used as a basis for improvements to future iterations.
    Optics Express 05/2010; 18(11):11406-17. · 3.55 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Recent research by the authors on the effects of extremely low-frequency (ELF) magnetic field (MF) exposure on human heart rate (HR), heart rate variability (HRV), and skin blood perfusion found no cardiovascular effects of exposure to an 1,800-μT, 60-Hz MF. Research from our group using rats, however, has suggested a microcirculatory response to a 200-μT, 60-Hz MF exposure. The present pilot study investigated the effects of 1 h of exposure to a 200-μT, 60-Hz MF on the human circulation. Microcirculation (as skin blood perfusion) and HR were measured using laser Doppler flowmetry. Mean arterial pressure was monitored with a non-invasive blood pressure system. Ten volunteers were recruited to partake in a counterbalanced, single-blinded study consisting of two testing sessions (real and sham exposure) administered on separate days. Each session included four consecutive measurement periods separated by rest, allowing assessment of cumulative and residual MF effects. A within-subjects analysis of variance did not reveal session by time period interactions for any of the parameters which would have been suggestive of a MF effect (p > 0.05). Perfusion, HR, and skin surface temperature decreased over the course of the experiment (p < 0.05). The MF used in this experiment did not affect perfusion, HR, or mean arterial pressure. Decreasing perfusion and HR trends over time were similar to our previous results and appear to be associated with a combination of inactivity (resulting in decreasing body temperatures) and reduced physiological arousal.
    International Archives of Occupational and Environmental Health 05/2010; 84(3):267-77. · 2.10 Impact Factor
  • Science 04/2010; 328(5978):568-9. · 31.20 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Human physiological tremor is a complex phenomenon that is modulated by numerous mechanical, neurophysiological, and environmental conditions. Researchers investigating tremor have suggested that acute hypoxia increases tremor amplitude. Based on the results of prior studies, we hypothesized that human participants exposed to a simulated altitude of 4,500 m would display an increased tremor amplitude within the 6-12 Hz frequency range. Postural and kinetic tremors were recorded with a laser system in 23 healthy male participants before, during, and after 1 h of altitude-induced hypoxia. A large panel of tremor characteristics was used to investigate the effect of hypoxia. Acute hypoxia increased tremor frequency content between 6 and 12 Hz during both postural and kinetic tremor tasks (P < 0.05, F = 6.142, Eta(2) = 0.24 and P < 0.05, F = 3.767 Eta(2) = 0.14, respectively). Although the physiological mechanisms underlying the observed changes in tremor are not completely elucidated yet, this study confirms that acute hypoxia increases tremor frequency in the 6-12 Hz range. Furthermore, this study indicates that changes in physiological tremor can be detected at lower hypoxemic levels than previously reported (blood saturation in oxygen = 80.9%). The effects of hypoxia mainly result from a cascade of events starting with the activation of the hypothalamic-pituitary-adrenal axis causing in turn an increase in catecholamine release, leading to an augmentation of tremor amplitude in the 6- to 12-Hz interval and heart rate increase.
    Arbeitsphysiologie 04/2010; 110(1):109-19. · 2.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Photoacoustic imaging is a hybrid imaging modality capable of producing contrast similar to optical imaging techniques but with increased penetration depth and resolution in turbid media by encoding the information as acoustic waves. In general, it is important to characterize system performance by parameters such as sensitivity, resolution, and contrast. However, system characterization can extend beyond these metrics by implementing advanced analysis via singular value decomposition. A method was developed to experimentally measure a matrix that represented the imaging operator for the system. Analysis of the imaging operator was done via singular value decomposition so that the capability of the system to reconstruct objects and the inherent system sensitivity to those objects could be understood. The results provided by singular value decomposition were compared to simulations performed on an ideal system with matching transducer arrangement and defined object space.
    Proc SPIE 02/2010;
  • [show abstract] [hide abstract]
    ABSTRACT: A photoacoustic tomography (PAT) method that employs a sparse two-dimentional (2D) array of detector elements has recently been employed to reconstruct images of simple objects from highly incomplete measurement data. However, there remains an important need to understand what type of object features can be reliably reconstructed from such a system. In this work, we numerically compute the singular value decomposition (SVD) of different system matrices that are relevant to implementations of sparse-array PAT. For a given number and arrangement of measurement transducers, this will reveal the type of object features that can reliably be reconstructed as well as those that are invisible to the imaging system.
    Proc SPIE 02/2010;

Publication Stats

151 Citations
35 Downloads
2k Views
116.48 Total Impact Points

Institutions

  • 2006–2013
    • Lawson Health Research Institute
      London, Ontario, Canada
  • 1998–2011
    • The University of Western Ontario
      • Department of Medical Biophysics
      London, Ontario, Canada
  • 1998–2009
    • St. Joseph's Health Care London
      London, Ontario, Canada
  • 2001–2003
    • College of the Holy Cross
      Worcester, Massachusetts, United States
  • 2000–2001
    • University of Massachusetts Medical School
      • Department of Radiology
      Worcester, Massachusetts, United States