Manuela Sironi

IRCCS Eugenio Medea, Bosisio Parini, Lombardy, Italy

Are you Manuela Sironi?

Claim your profile

Publications (98)710.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several susceptibility genetic variants for autoimmune diseases have been identified. A subset of these polymorphisms displays an opposite risk profile in different autoimmune conditions. This observation open interesting questions on the evolutionary forces shaping the frequency of these alleles in human populations.We aimed at testing the hypothesis whereby balancing selection has shaped the frequency of opposite risk alleles. Since balancing selection signatures are expected to extend over short genomic portions, we focused our analyses on 11 regions carrying putative functional polymorphisms that may represent the disease variants (and the selection targets). No exceptional nucleotide diversity was observed for ZSCAN23, HLA-DMB, VARS2, PTPN22, BAT3, C6orf47, and IL10; summary statistics were consistent with evolutionary neutrality for these gene regions. Conversely, CDSN/PSORS1C1, TRIM10/TRIM40, BTNL2, and TAP2 showed extremely high nucleotide diversity and most tests rejected neutrality, suggesting the action of balancing selection. For TAP2 and BTNL2 these signatures are not secondary to linkage disequilibrium with HLA class II genes. Nonetheless, with the exception of variants in TRIM40 and CDSN, our data suggest that opposite risk SNPs are not selection targets but rather have accumulated as neutral variants. Data herein indicate that balancing selection is common within the extended MHC region and involves several non-HLA loci. Yet, the evolutionary history of most SNPs with an opposite effect for autoimmune diseases is consistent with evolutionary neutrality. We suggest that variants with an opposite effect on autoimmune diseases should not be considered a distinct class of disease alleles from the evolutionary perspective and, in a few cases, the opposite effect on distinct diseases may derive from complex haplotype structures in regions with high genetic diversity.
    BMC Evolutionary Biology 06/2011; 11:171. DOI:10.1186/1471-2148-11-171 · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human RAC2 gene encodes a small GTP-binding protein with a pivotal role in immune activation and in the induction of peripheral immune tolerance through restimulation-induced cell death (RICD). Different human pathogens target the protein product of RAC2, suggesting that the gene may be subject to natural selection, and that variants in RAC2 may affect immunological phenotypes in humans. We scanned the genomic region encompassing the entire transcription unit for the presence of putative noncoding regulatory elements conserved across mammals. This information was used to select two RAC2 gene regions and analyze their intraspecific genetic diversity. Results suggest that a region covering the 3' untranslated region has been a target of multiallelic balancing selection (or diversifying selection), and three major RAC2 haplogroups occur in human populations. Haplotypes belonging to one of these clades are associated with increased susceptibility to multiple sclerosis (P = 0.022) and earlier onset of disease symptoms (P = 0.025). This same haplogroup is significantly more common in patients with Crohn's disease compared with healthy controls (P = 0.048). These data reinforce recent evidences that susceptibility alleles/haplotypes are shared among multiple autoimmune disorders and support a causal "role for RAC2" variants in the pathogenesis of autoimmune diseases. Other genes with a role in RICD have previously been associated with autoimmunity in humans, suggesting that this pathway and RAC2 may represent novel therapeutic targets in autoimmune disorders.
    Molecular Biology and Evolution 06/2011; 28(12):3319-29. DOI:10.1093/molbev/msr164 · 14.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a C++ class library developed to the purpose of making the implementation of sequence analysis algorithms easier and faster when genomic annotations and variations need to be considered. The library provides a class hierarchy to seamlessly bind together annotations of genomic elements to sequences and to algorithm results; it allows to evaluate the effect of mutations/variations in terms of both element position shifts and of algorithm results, limiting recalculation to the minimum. Particular care has been posed to keep memory and time overhead into acceptable limits. AVAILABILITY AND IMPLEMENTATION: A complete tutorial as well as a detailed doxygen generated documentation and source code is freely available at http://bioinformatics.emedea.it/geco, under the GPL license. The library was written in standard ISO C++, and does not depend on external libraries.
    Bioinformatics 03/2011; 27(9):1313-5. DOI:10.1093/bioinformatics/btr123 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human TRIM5 genes encodes a retroviral restriction factor (TRIM5α). Evolutionary analyses of this gene in mammals have revealed a complex and multifaceted scenario, suggesting that TRIM5 has been the target of exceptionally strong selective pressures, possibly exerted by recurrent waves of retroviral infections. TRIM5 displays inter-individual expression variability in humans and high levels of TRIM5 mRNA have been associated with a reduced risk of HIV-1 infection. We resequenced TRIM5 in chimpanzees and identified two polymorphisms in intron 1 that are shared with humans. Analysis of the gene region encompassing the two trans-specific variants in human populations identified exceptional nucleotide diversity levels and an excess of polymorphism compared to fixed divergence. Most tests rejected the null hypothesis of neutral evolution for this region and haplotype analysis revealed the presence of two deeply separated clades. Calculation of the time to the most recent common ancestor (TMRCA) for TRIM5 haplotypes yielded estimates ranging between 4 and 7 million years. Overall, these data indicate that long-term balancing selection, an extremely rare process outside MHC genes, has maintained trans-specific polymorphisms in the first intron of TRIM5. Bioinformatic analyses indicated that variants in intron 1 may affect transcription factor-binding sites and, therefore, TRIM5 transcriptional activity. Data herein confirm an extremely complex evolutionary history of TRIM5 genes in primates and open the possibility that regulatory variants in the gene modulate the susceptibility to HIV-1.
    Human Genetics 12/2010; 128(6):577-88. DOI:10.1007/s00439-010-0884-6 · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human ERAP1 and ERAP2 encode two endoplasmic reticulum aminopeptidases. These enzymes trim peptides to optimal size for loading onto major histocompatibility complex class I molecules and shape the antigenic repertoire presented to CD8(+) T cells. Therefore, ERAP1 and ERAP2 may be considered potential selection targets and modulators of infection susceptibility. We resequenced two genic regions in ERAP1 and ERAP2 in three HapMap populations. In both cases, we observed high levels of nucleotide variation, an excess of intermediate-frequency alleles, and reduced population genetic differentiation. The genealogy of ERAP1 and ERAP2 haplotypes was split into two major branches with deep coalescence times. These features suggest that long-standing balancing selection has acted on these genes. Analysis of the Lys528Arg (rs30187 in ERAP1) and Asn392Lys (rs2549782 in ERAP2) variants in an Italian population of HIV-1-exposed seronegative (ESN) individuals and a larger number of Italian controls indicated that rs2549782 significantly deviates from Hardy-Weinberg equilibrium (HWE) in ESN but not in controls. Technical errors were excluded and a goodness-of-fit test indicated that a recessive model with only genetic effects adequately explains HWE deviation. The genotype distribution of rs2549782 is significantly different in the two cohorts (P = 0.004), mainly as the result of an over-representation of Lys/Lys genotypes in the ESN sample (P-value for a recessive model: 0.00097). Our data suggest that genetic diversity in ERAP1 and ERAP2 has been maintained by balancing selection and that variants in ERAP2 confer resistance to HIV-1 infection possibly via the presentation of a distinctive peptide repertoire to CD8(+) T cells.
    Human Molecular Genetics 12/2010; 19(23):4705-14. DOI:10.1093/hmg/ddq401 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human interferon induced with helicase C domain 1 (IFIH1) gene encodes a sensor of double-strand RNA involved in innate immunity against viruses, indicating that this gene is a likely target of virus-driven selective pressure. Notably, IFIH1 also plays a role in autoimmunity, as common and rare polymorphisms in this gene have been associated with type 1 diabetes (T1D). We analyzed the evolutionary history of IFIH1 in human populations. Results herein suggest that two major IFIH1 haplotype clades originated from ancestral population structure (or balancing selection) in the African continent and that local selective pressures have acted on the gene. Specifically, directional selection in Europe and Asia resulted in the spread of a common IFIH1 haplotype carrying a derived His460 allele. This variant changes a highly conserved arginine residue in the helicase domain, possibly conferring altered specificity in viral recognition. An alternative common haplotype has swept to high frequency in South Americans as a result of recent positive selection. Previous studies suggested that a portion of risk alleles for autoimmune diseases could have been maintained in humans as they conferred a selective advantage against infections. This is not the case for IFIH1, as population genetic differentiation and haplotype analyses indicated that the T1D susceptibility alleles behaved as neutral or nearly neutral polymorphisms. Our findings suggest that variants in IFIH1 confer different susceptibility to diverse viral infections and provide insight into the relationship between adaptation to past infection and predisposition to autoimmunity in modern populations.
    Molecular Biology and Evolution 11/2010; 27(11):2555-66. DOI:10.1093/molbev/msq141 · 14.31 Impact Factor
  • Source
    Genome Biology 10/2010; 11(Suppl 1). DOI:10.1186/gb-2010-11-s1-p38 · 10.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.
    BMC Evolutionary Biology 08/2010; 10:264. DOI:10.1186/1471-2148-10-264 · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies, we identified a locus for schizophrenia on 6q23.3 and proposed the Abelson helper integration site 1 (AHI1) as the candidate gene. AHI1 is expressed in the brain and plays a key role in neurodevelopment, is involved in Joubert syndrome, and has been recently associated with autism. The neurodevelopmental role of AHI1 fits with etiological hypotheses of schizophrenia. To definitively confirm our hypothesis, we searched for associations using a dense map of the region. Our strongest findings lay within the AHI1 gene: single-nucleotide polymorphisms rs11154801 and rs7759971 showed significant associations (P=6.23E-06; P=0.84E-06) and haplotypes gave P values in the 10E-8 to 10E-10 range. The second highest significant region maps close to AHI1 and includes the intergenic region between BC040979 and PDE7B (rs2038549 at P=9.70E-06 and rs1475069 at P=6.97E-06), and PDE7B and MAP7. Using a sample of Palestinian Arab families to confirm these findings, we found isolated signals. While these results did not retain their significance after correction for multiple testing, the joint analysis across the 2 samples supports the role of AHI1, despite the presence of heterogeneity. Given the hypothesis of positive selection of schizophrenia genes, we resequenced a 11 kb region within AHI1 in ethnically defined populations and found evidence for a selective sweep. Network analysis indicates 2 haplotype clades, with schizophrenia-susceptibility haplotypes clustering within the major clade. In conclusion, our data support the role of AHI1 as a susceptibility gene for schizophrenia and confirm it has been subjected to positive selection, also shedding light on new possible candidate genes, MAP7 and PDE7B.
    The FASEB Journal 04/2010; 24(8):3066-82. DOI:10.1096/fj.09-152611 · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CPB2 gene encodes thrombin-activatable fibrinolysis inhibitor (TAFI), a hepatically secreted zymogen acting as a molecular link among coagulation, fibrinolysis, and inflammation. Variants in CPB2 have been associated with several human conditions. We resequenced and analyzed the two regions carrying previously known nonsynonimous single-nucleotide polymorphisms (Ala147Thr and Ile325Thr) and variants affecting transcript stability. Our data indicate that whereas the gene portion extending from exon 9 to the 3' untranslated region fits a model of neutral evolution, variants in the region encompassing exons 6-7 have been maintained by balancing selection. Indeed, we verified that the region displays high nucleotide diversity, many intermediate frequency variants, and an excess of polymorphism compared with interspecific divergence. Consistently, haplotype analysis indicated the presence of two major haplotype clades separated by deep branches. Transcript analysis revealed that in both HepG2 cells and human liver samples, CPB2 exon 7 undergoes haplotype-preferential skipping. Therefore, we indicate that balancing selection has been maintaining functional variants that promote alternative exon 7 splicing. Although transcripts lacking exon 7 represent a minority of total CPB2 products, the effect on antifibrinolytic activity might be much greater as the intrinsic instability of TAFI is a major determinant of its antifibrinolytic potential. These data highlight the contribution of population genetics approaches to the analysis of functional genetic variation and may orient further biochemical and genetics studies on the pathophysiologic role of CPB2 gene products.
    Molecular Biology and Evolution 03/2010; 27(8):1945-54. DOI:10.1093/molbev/msq082 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protozoa exert a strong selective pressure in humans. The selection signatures left by these pathogens can be exploited to identify genetic modulators of infection susceptibility. We show that protozoa diversity in different geographic locations is a good measure of protozoa-driven selective pressure; protozoa diversity captured selection signatures at known malaria resistance loci and identified several selected single nucleotide polymorphisms in immune and hemolytic anemia genes. A genome-wide search enabled us to identify 5180 variants mapping to 1145 genes that are subjected to protozoa-driven selective pressure. We provide a genome-wide estimate of protozoa-driven selective pressure and identify candidate susceptibility genes for protozoa-borne diseases.
    Trends in Genetics 03/2010; 26(3):95-9. DOI:10.1016/j.tig.2009.12.010 · 11.60 Impact Factor
  • The American Journal of Human Genetics 03/2010; 86(3):493-5. DOI:10.1016/j.ajhg.2010.01.032 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viruses have exerted a constant and potent selective pressure on human genes throughout evolution. We utilized the marks left by selection on allele frequency to identify viral infection-associated allelic variants. Virus diversity (the number of different viruses in a geographic region) was used to measure virus-driven selective pressure. Results showed an excess of variants correlated with virus diversity in genes involved in immune response and in the biosynthesis of glycan structures functioning as viral receptors; a significantly higher than expected number of variants was also seen in genes encoding proteins that directly interact with viral components. Genome-wide analyses identified 441 variants significantly associated with virus-diversity; these are more frequently located within gene regions than expected, and they map to 139 human genes. Analysis of functional relationships among genes subjected to virus-driven selective pressure identified a complex network enriched in viral products-interacting proteins. The novel approach to the study of infectious disease epidemiology presented herein may represent an alternative to classic genome-wide association studies and provides a large set of candidate susceptibility variants for viral infections.
    PLoS Genetics 02/2010; 6(2):e1000849. DOI:10.1371/journal.pgen.1000849 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin-converting enzyme plays a critical role in the maintenance of cardiovascular homeostasis. Extensive research has aimed at identifying ACE genetic variants responsible for variation in enzyme plasma concentrations and associated with human diseases. These efforts have been hampered by the extensive linkage disequilibrium across the gene and the identity or location of the functional polymorphism(s) is at presently unknown. The aim of our study was to verify whether the Alu insertion/deletion (Alu I/D) polymorphism or any linked variant has been maintained by natural selection in human populations. We resequenced a gene region surrounding the Alu I/D polymorphism in four human populations; we applied population neutrality tests and performed haplotype analysis for this region. We observed high levels of nucleotide diversity, an excess of intermediate frequency alleles and, at least in African populations, a higher level of within-species diversity compared with interspecific divergence. Analysis of haplotype genealogy indicated the presence of two major clades separated by deep branches with a coalescence time older than 1.5 million years. All these features strongly suggest the action of balancing selection and we verified that the selection signature is restricted to the gene region surrounding the Alu I/D. Our data imply the presence of a functional polymorphism in the Alu I/D region and illustrate the contribution of evolutionary models to classic single nucleotide polymorphism-phenotype association approaches by providing information about the localization of candidate functional variants.
    Pharmacogenetics and Genomics 02/2010; 20(2):131-4. DOI:10.1097/FPC.0b013e3283333532 · 3.45 Impact Factor
  • Manuela Sironi, Mario Clerici
    [Show abstract] [Hide abstract]
    ABSTRACT: The hygiene hypothesis relies on the assumption that humans have adapted to a pathogen-rich environment that no longer exists in industrialized societies. Recent advances in molecular immunology and population genetics allow deeper insight into the evolution and co-evolution of host-pathogen interactions and, therefore, into the foundations of the hygiene hypothesis.
    Microbes and Infection 02/2010; 12(6):421-7. DOI:10.1016/j.micinf.2010.02.002 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial Mediterranean Fever (FMF) is a recessively inherited systemic autoinflammatory disease caused by mutations in the MEFV gene. The frequency of different disease alleles is extremely high in multiple populations from the Mediterranean region, suggesting heterozygote advantage. Here, we characterize the sequence variation and haplotype structure of the MEFV 3' gene region (from exon 5 to the 3' UTR) in seven human populations. In non-African populations, we observed high levels of nucleotide variation, an excess of intermediate-frequency alleles, reduced population differentiation and a genealogy with two common haplotypes separated by deep branches. These features are suggestive of balancing selection having acted on this region to maintain one or more selected alleles. In line with this finding, an excess of heterozygotes was observed in Europeans and Asians, suggesting an overdominance regime. Our data, together with the earlier demonstration that the MEFV exon 10 has been subjected to episodic positive selection over primate evolution, provide evidence for an adaptive role of nucleotide variation in this gene region. Our data suggest that further studies aimed at clarifying the role of MEFV variants might benefit from the integration of molecular evolutionary and functional analyses.
    Genes and immunity 09/2009; 10(8):678-86. DOI:10.1038/gene.2009.59 · 3.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, three genes--ADRB1, ADRB2 and ADRB3--encode beta-adrenoreceptors (ADRB); these molecules mediate the action of catecholamines in multiple tissues and play pivotal roles in cardiovascular, respiratory, metabolic, and immunological functions. Genetic variants in ADRB genes have been associated with widespread diseases and conditions, but inconsistent results have often been obtained. Here, we addressed the recent evolutionary history of ADRB genes in human populations. Although ADRB1 is neutrally evolving, most tests rejected neutral evolution for ADRB2 in European, African, and Asian population samples. Analysis of inferred haplotypes for ADRB2 revealed three major clades with a coalescence time of 1-1.5 million years, suggesting that the gene is either subjected to balancing selection or undergoing a selective sweep. Haplotype analysis also revealed ethnicity-specific differences. Additionally, we observed significant deviations from Hardy-Weinberg equilibrium (HWE) for ADRB2 genotypes in distinct European cohorts; HWE deviation depends on sex (only females are in disequilibrium), and genotypes displaying maximum and minimum relative fitness differ across population samples, suggesting a complex situation possibly involving epistasis or maternal selection. Overall, our data indicate that future association studies involving ADRB2 will benefit from taking into account ethnicity-specific haplotype distributions and sex-based effects. With respect to ADRB3, our data indicate that the gene has been subjected to a selective sweep in African populations, the Trp64 variant possibly representing the selection target. Given the previous association of the ancestral ADRB3 Arg64 allele with obesity and type 2 diabetes, dietary adaptations might represent the underlying selective force.
    The American Journal of Human Genetics 08/2009; 85(1):64-75. DOI:10.1016/j.ajhg.2009.06.005 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many human genes have adapted to the constant threat of exposure to infectious agents; according to the "hygiene hypothesis," lack of exposure to parasites in modern settings results in immune imbalances, augmenting susceptibility to the development of autoimmune and allergic conditions. Here, by estimating the number of pathogen species/genera in a specific geographic location (pathogen richness) for 52 human populations and analyzing 91 interleukin (IL)/IL receptor genes (IL genes), we show that helminths have been a major selective force on a subset of these genes. A population genetics analysis revealed that five IL genes, including IL7R and IL18RAP, have been a target of balancing selection, a selection process that maintains genetic variability within a population. Previous identification of polymorphisms in some of these loci, and their association with autoimmune conditions, prompted us to investigate the relationship between adaptation and disease. By searching for variants in IL genes identified in genome-wide association studies, we verified that six risk alleles for inflammatory bowel (IBD) or celiac disease are significantly correlated with micropathogen richness. These data support the hygiene hypothesis for IBD and provide a large set of putative targets for susceptibility to helminth infections.
    Journal of Experimental Medicine 07/2009; 206(6):1395-408. DOI:10.1084/jem.20082779 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary spastic paraplegia (HSP) with thin corpus callosum (HSP-TCC) is a frequent subtype of complicated HSP clinically characterised by slowly progressive spastic paraparesis with cognitive impairment and thin corpus callosum (TCC). SPG11, the gene associated with the major locus involved, encodes spatacsin, a protein of unknown function. Different types of mutations were identified in patients with the complex form of HSP (cHSP) including TCC. We screened a series of 45 index patients with different types of cHSP with (n = 10) and without (n = 35) TCC. Ten mutations, of which five are novel, were detected in seven patients. Of importance, three out of seven mutated patients present with cHSP without TCC. Among the novel mutations identified, we characterised a large intragenic rearrangement deleting 2.6 kb of the SPG11 gene. The rearrangement is due to non-allelic homologous recombination between Alu sequences flanking the breakpoints. These findings expand the mutation spectrum of SPG11 and suggest that SPG11 mutations may occur more frequently in familial than sporadic forms of cHSP without TCC. This helps to define further clinical and molecular criteria for a correct diagnosis of the SPG11 related form of cHSP. In addition, the intragenic deletion detected here, and the mechanism involved, both provide clues to address the issue of SPG11 missing mutant alleles previously reported.
    Journal of Medical Genetics 03/2009; 46(5):345-51. DOI:10.1136/jmg.2008.063321 · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vasopressin receptor type 1b (AVPR1B) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses. Here we have analyzed the two exons of the gene and the data we present suggest that AVPR1B has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection. Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution.
    BMC Evolutionary Biology 02/2009; 9:123. DOI:10.1186/1471-2148-9-123 · 3.41 Impact Factor

Publication Stats

2k Citations
710.48 Total Impact Points

Institutions

  • 2001–2013
    • IRCCS Eugenio Medea
      Bosisio Parini, Lombardy, Italy
  • 2010
    • Ospedale di San Raffaele Istituto di Ricovero e Cura a Carattere Scientifico
      Milano, Lombardy, Italy
  • 1999–2006
    • University of Milan
      • Department of Neurological Sciences
      Milano, Lombardy, Italy