George P Tegos

University of New Mexico, Albuquerque, New Mexico, United States

Are you George P Tegos?

Claim your profile

Publications (69)237.02 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Gram-positive anaerobic bacterium Clostridium difficile produces toxins A and B, which can cause a spectrum of diseases from pseudomembranous colitis to C. difficile-associated diarrhea. A limited number of C. difficile strains also produce a binary toxin that exhibits ADP ribosyltransferase activity. Here, the structure and the mechanism of action of these toxins as well as their role in disease are reviewed. Nosocomial C. difficile infection is often contracted in hospital when patients treated with antibiotics suffer a disturbance in normal gut microflora. C. difficile spores can persist on dry, inanimate surface for months. Metronidazole and oral vancomycin are clinically used for treatment of C. difficile infection but clinical failure and concern about promotion of resistance are motivating the search for novel non-antibiotic therapeutics. Methods for controlling both toxins and spores, replacing gut microflora by probiotics or fecal transplant, and killing bacteria in the anaerobic gut by photodynamic therapy are discussed.
    Expert Review of Anticancer Therapy 01/2014; 12(1):131-50. · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights the concepts, recent applications and limitations of High Throughput Screening (HTS) flow cytometry-based efflux inhibitory assays. This platform has been employed in mammalian and yeast efflux systems leading to the identification of small molecules with transporter inhibitory capabilities. This technology offers the possibility of substrate multiplexing and may promote novel strategies targeting microbial efflux systems. This platform can generate a comprehensive dataset that may support efforts to map the interface between chemistry and transporter biology in a variety of pathogenic systems.
    Drug Discovery Today Technologies 01/2014;
  • George P Tegos
    Virulence 11/2013; 4(8). · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella. We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone. G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains.
    BMC Microbiology 10/2013; 13(1):217. · 2.98 Impact Factor
  • Source
    George P Tegos, Michael R Hamblin
    [Show abstract] [Hide abstract]
    ABSTRACT: This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives.
    Current Opinion in Pharmacology 09/2013; · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article highlights current trends and advances in exploiting natural sources for the deployment of novel and potent anti-infective countermeasures. The key challenge is to therapeutically target bacterial pathogens that exhibit a variety of puzzling and evolutionarily complex resistance mechanisms. Special emphasis is given to the strengths, weaknesses, and opportunities in the natural product antibacterial drug discovery arena, and to emerging applications driven by advances in bioinformatics, chemical biology, and synthetic biology in concert with exploiting bacterial phenotypes. These efforts have identified a critical mass of natural product antibacterial lead compounds and discovery technologies with high probability of successful implementation against emerging bacterial pathogens.
    Current Opinion in Pharmacology 07/2013; · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents.
    Expert Review of Anticancer Therapy 07/2013; 11(7):669-93. · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2 •(-) ), hydrogen peroxide (H2 O2 ), hydroxyl radical ((•) OH), and singlet oxygen ((1) O2 ), but they display very different kinetics and levels of activity. The effects of O2 •(-) and H2 O2 are less acute than those of (•) OH and (1) O2 , since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify (•) OH or (1) O2 , making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. One sentence summary. Reactive oxygen species are involved in cell signaling and disease causing damages, and in the antimicrobial arena mediate killing via bactericidal antibiotics, photodynamic inactivation, titania photocatalysis, cold plasma, medicinal honey, and nitric oxide releasing nanoparticles. This article is protected by copyright. All rights reserved.
    FEMS microbiology reviews 06/2013; · 10.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy related drug resistance and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex in not known. In order to understand ABCB6 role in mitochondrial transport we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 μM) and an ATPase activity with a Km of 0.99 mM. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate stimulated ATPase activity (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III and (iii) transport kinetics of substrates identified using a High-throughput screening (HTS) assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Further, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure, function of ABCB6.
    Journal of Biological Chemistry 06/2013; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP binding cassette (ABC)3 transmembrane efflux pumps such as P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2) play an important role in anticancer drug resistance. A large number of structurally and functionally diverse compounds act as substrates or modulators of these pumps. In vitro assessment of the affinity of drug candidates for multidrug resistance proteins is central to predict in vivo pharmacokinetics and drug-drug interactions. The objective of this study was to identify and characterize new substrates for these transporters. As part of a collaborative project with Life Technologies™, 102 fluorescent probes were investigated in a flow cytometric screen of ABC transporters. The primary screen compared substrate efflux activity in parental cell lines to their corresponding highly expressing resistant counterparts. The fluorescent compound library included a range of excitation/emission profiles and required dual laser excitation as well as multiple fluorescence detection channels. A total of 31 substrates with active efflux in one or more pump, and practical fluorescence response ranges were identified and tested for interaction with 8 known inhibitors. This screening approach provides an efficient tool for identification and characterization of new fluorescent substrates for ABCB1, ABCC1, and ABCG2.
    Analytical Biochemistry 03/2013; · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed (the greater wax moth) caterpillar fatally infected with to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by in , we found that the death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all strains tested were capable of infecting and killing . Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by ( = 0.0003, = 0.0001 and = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival ( = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant , with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT ( = 0.0095) or vancomycin treatment alone ( = 0.0025), suggesting that the aPDT made the vancomycin resistant strain more susceptible to vancomycin action. In summary, provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.
    PLoS ONE 01/2013; 8(2):e55926. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches.
    The Open Microbiology Journal 01/2013; 7:34-52.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance.
    PLoS ONE 01/2013; 8(1):e54387. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blue light has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. However, the use of blue light for wound infections has not been established yet. In this study, we demonstrated the efficacy of blue light at 415 nm for treatment of acute, potentially lethal Pseudomonas aeruginosa burn infections in mice. In vitro studies demonstrated that the inactivation rate of P. aeruginosa cells by blue light was approximately 35-fold faster than that of keratinocytes (P=0.0014). Transmission electron microscopy revealed blue light mediated intracellular damage to P. aeruginosa cells. Fluorescence spectroscopy suggested that coproporphyrin III or/and uroporphyrin III are possibly the intracellular photosensitive chromophores associated with the blue light inactivation of P. aeruginosa. In vivo studies using an in vivo bioluminescence imaging technique and the area-under-the-bioluminescence-time-curve (AUBC) analysis showed that a single exposure of blue light at 55.8 J/cm(2), applied 30 min after bacterial inoculation to the infected mouse burns, reduced the AUBC by an approximately 100-fold in comparison with untreated and infected mouse burns (P<0.0001). Histological analysis and TUNEL assay indicated no significant damages in the mouse skin exposed to blue light at the effective antimicrobial dose. Survival analysis revealed that blue light increased the survival rate of infected mice from 18.2% to 100% (P<0.0001). In conclusion, blue light therapy may offer an effective and safe alternative to conventional antimicrobial therapy for P. aeruginosa burn infections.
    Antimicrobial Agents and Chemotherapy 12/2012; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate whether C. albicans exhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells. C. albicans were exposed to sublethal APDI using methylene blue (MB) as photosensitizer (0.05 mM) combined with a GaAlAs diode laser (λ= 660 nm, 75 mW/cm(2), 9 -27 J/cm(2)). In vitro, we evaluated APDI effects on C. albicans growth, germ tube formation, sensitivity to oxidative and osmotic stress, cell wall integrity, and fluconazole susceptibility. In vivo, we evaluated C. albicans pathogenicity using a mouse model of systemic infection. Animal survival was evaluated daily. Sublethal MB-mediated APDI reduced the growth rate and the ability of C. albicans to form germ tubes when compared to untreated cells (P<0.05). Survival of mice systemically infected with C. albicans pre-treated with APDI was significantly increased compared to mice infected with untreated yeast (P<0.05). APDI increased C. albicans sensitivity to sodium dodecyl sulfate, caffeine, and hydrogen peroxide. The MIC for fluconazole for C. albicans was also reduced following sublethal MB-mediated APDI. However, none of those pathogenic parameters was altered in daughter cells of C. albicans submitted to APDI. These data suggest that APDI may inhibit virulence factors and reduce in vivo pathogenicity of C. albicans. The absence of alterations in daughter cells indicates that APDI effects are transitory. The MIC reduction for fluconazole following APDI suggests that this antifungal could be combined with APDI to treat C. albicans infections.
    Antimicrobial Agents and Chemotherapy 11/2012; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the beginning of the conflicts in the Middle East, US Army physicians have noted a high rate of multidrug-resistant Acinetobacter baumannii infections among US soldiers wounded and initially treated in Iraq. In this study, we investigated the use of ultraviolet C (UVC) light for prevention of multidrug-resistant A. baumannii wound infections using mouse models. Partial-thickness skin abrasions and full-thickness burns in mice were infected with a multidrug-resistant A. baumannii isolate recovered from a wounded US soldier deployed to Iraq. The luxCDABE operon, which was contained in plasmid pMF 385, was cloned into the A. baumannii strain. This allowed real-time monitoring of the extent of infection in mice using bioluminescence imaging. UVC light was delivered to the mouse wounds at 30 minutes after the inoculation of A. baumannii. Groups of infected mouse wounds without being exposed to UVC served as the controls. In vitro studies demonstrated that A. baumannii cells were inactivated at UVC exposures much lower than those needed for a similar effect on mammalian cells. It was observed in animal studies that UVC (3.24 J/cm(2) for abrasions and 2.59 J/cm(2) for burns) significantly reduced the bacterial burdens in UVC-treated wounds by approximately 10-fold compared with nontreated controls (p = 0.004 for abrasions, p = 0.019 for burns). DNA lesions were observed by immunofluorescence in mouse skin abrasions immediately after a UVC exposure of 3.24 J/cm(2); however, the lesions were extensively repaired within 72 hours. These results suggested that UVC may be useful in preventing combat-related wound infections.
    The journal of trauma and acute care surgery. 09/2012; 73(3):661-7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented.
    Journal of Biomolecular Screening 08/2012; · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blue light, particularly in the wavelength range of 405-470nm, has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. In addition, it is commonly accepted that blue light is much less detrimental to mammalian cells than ultraviolet irradiation, which is another light-based antimicrobial approach being investigated. In this review, we discussed the blue light sensing systems in microbial cells, antimicrobial efficacy of blue light, the mechanism of antimicrobial effect of blue light, the effects of blue light on mammalian cells, and the effects of blue light on wound healing. It has been reported that blue light can regulate multi-cellular behavior involving cell-to-cell communication via blue light receptors in bacteria, and inhibit biofilm formation and subsequently potentiate light inactivation. At higher radiant exposures, blue light exhibits a broad-spectrum antimicrobial effect against both Gram-positive and Gram-negative bacteria. Blue light therapy is a clinically accepted approach for Propionibacterium acnes infections. Clinical trials have also been conducted to investigate the use of blue light for Helicobacter pylori stomach infections and have shown promising results. Studies on blue light inactivation of important wound pathogenic bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa have also been reported. The mechanism of blue light inactivation of P. acnes, H. pylori, and some oral bacteria is proved to be the photo-excitation of intracellular porphyrins and the subsequent production of cytotoxic reactive oxygen species. Although it may be the case that the mechanism of blue light inactivation of wound pathogens (e.g., S. aureus, P. aeruginosa) is the same as that of P. acnes, this hypothesis has not been rigorously tested. Limited and discordant results have been reported regarding the effects of blue light on mammalian cells and wound healing. Under certain wavelengths and radiant exposures, blue light may cause cell dysfunction by the photo-excitation of blue light sensitizing chromophores, including flavins and cytochromes, within mitochondria or/and peroxisomes. Further studies should be performed to optimize the optical parameters (e.g., wavelength, radiant exposure) to ensure effective and safe blue light therapies for infectious disease. In addition, studies are also needed to verify the lack of development of microbial resistance to blue light.
    Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 07/2012; 15(4):223-36. · 12.58 Impact Factor
  • Source
    61st Gordon Research Conference (GRC) on Natural Products, Proctor Academy Andover, NH, USA; 07/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prevention and control of infectious diseases remains a major public health challenge and a number of highly virulent pathogens are emerging both in and beyond the hospital setting. Despite beneficial aspects such as use in biocontrol and bioremediation exhibited by members of the Burkholderia cepacia complex (Bcc) some members of this group have recently gained attention as significant bacterial pathogens due to their high levels of intrinsic antibiotic resistance, transmissibility in nosocomial settings, persistence in the presence of antimicrobials and intracellular survival capabilities. The Bcc are opportunistic pathogens and their arsenal of virulence factors includes proteases, lipases and other secreted exoproducts, including secretion system-associated effectors. Deciphering the function of virulence factors and assessment of novel therapeutic strategies has been facilitated by use of diverse non-vertebrate hosts (the fly Drosophila melanogaster, the microscopic nematode Caenorhabditis elegans, the zebrafish and the greater Galleria mellonella wax moth caterpillar larvae). Researchers are now employing sophisticated approaches to dissect the virulence determinants of Bcc with the ultimate goal being the development of novel anti-infective countermeasures. This editorial will highlight selected recent research endeavors aimed at dissecting adaptive responses and the virulence factor portfolio of Burkholderia species.
    Virulence 05/2012; 3(3):234-7. · 2.79 Impact Factor

Publication Stats

1k Citations
237.02 Total Impact Points

Institutions

  • 2011–2014
    • University of New Mexico
      • Center for Molecular Discovery
      Albuquerque, New Mexico, United States
    • University of Ioannina
      • Laboratory of Analytical Chemistry
      Ioánnina, Ipeiros, Greece
  • 2013
    • National and Kapodistrian University of Athens
      Athínai, Attica, Greece
  • 2005–2013
    • Massachusetts General Hospital
      • Wellman Center for Photomedicine
      Boston, Massachusetts, United States
    • Harvard Medical School
      • Department of Dermatology
      Boston, Massachusetts, United States
  • 2012
    • Universidad Nacional de Mar del Plata
      • Facultad de Ciencias Exactas y Naturales
      Mar del Plata, Provincia de Buenos Aires, Argentina
  • 2010
    • Universitat Ramon Llull
      Barcino, Catalonia, Spain
    • University of Toronto
      • Faculty of Dentistry
      Toronto, Ontario, Canada
  • 2006
    • University of Tulsa
      • Department of Chemistry and Biochemistry
      Tulsa, OK, United States
  • 2002–2003
    • Northeastern University
      • Department of Biology
      Boston, Massachusetts, United States
    • Colorado State University
      • Chemistry
      Fort Collins, CO, United States