Ho-Yong Park

Korea Research Institute of Bioscience and Biotechnology KRIBB, Anzan, Gyeonggi-do, South Korea

Are you Ho-Yong Park?

Claim your profile

Publications (56)102.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The anti-obesity effects of extracts from soy leaves (SLE) cultivated for 8 weeks (8W) or 16 weeks (16W) were investigated in diet-induced obese mice. The effects of kaempferol, an aglycone of the kaempferol glycosides that are the major component of 8W-SLE, and coumestrol, the major component of 16W-SLE, were also investigated in 3T3-L1 adipocytes. Eight-week-old male C57BL/6J mice were randomly divided into normal diet, high-fat diet (HFD), 8W-SLE (HFD+8W-SLE 50 mg kg(-1) day(-1)), 16W-SLE (HFD+16W-SLE 50 mg kg(-1) day(-1)), and Garcinia cambogia extracts (GE) (HFD+GE 50 mg kg(-1) day(-1)) groups. Body weight gain and fat accumulation of white adipose tissue (WAT) were highly suppressed by daily oral administration of 8W-SLE and 16W-SLE for 10 weeks. Supplementing a HFD with 8W-SLE and 16W-SLE regulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (c/EBPα), sterol regulatory element-binding protein-1 (SREBP-1), adipocyte protein 2, and fatty acid synthase (FAS), which are related to adipogenesis, in addition to hormone-sensitive lipase (HSL), carnitine palmitoyl transferase 1 (CPT-1), and uncoupling protein 2 (UCP2), which are related to fat oxidation in WAT. In 3T3-L1 adipocytes, kaempferol and coumestrol exhibited anti-adipogenic effects via downregulation of PPARγ, c/EBPα, SREBP-1, and FAS. Kaempferol and coumestrol increased the expression of HSL, CPT-1, and UCP2.
    Journal of medicinal food 03/2015; DOI:10.1089/jmf.2014.3388 · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arazyme is a metalloprotease released by Aranicola proteolyticus that was shown to inhibit cytokine release in HaCaT and endothelial cells. However, the regulatory effects of arazyme in atopic dermatitis remain to be fully understood. In the present study, the anti‑inflammatory effects of arazyme in BALB/c and Nc/Nga mice induced with 2,4‑dinitrochlrobenzene (DNCB) were investigated. BALB/c mice were sensitized with DNCB and were subsequently administered arazyme for 4 weeks either orally, dorsally or orally/dorsally. Arazyme administration significantly reduced epidermal thickening and infiltration of inflammatory cells into the dermis compared with the DNCB group. However, serum immunoglobulin E (IgE) levels were not altered by arazyme treatment. Additionally, the level of secretion of interleukins (IL)‑4, ‑5 and ‑13 in the splenocytes of BALB/c mice was elevated following stimulation with concanavalin A, while the increase of IL‑4 and IL‑13 was inhibited by arazyme. Administration of arazyme (25 mg/kg in phosphate‑buffered saline) to Nc/Nga mice that had been sensitized with DNCB for 6 weeks reduced the skin severity score compared with that in the DNCB group and inhibited the histological manifestations of atopic dermatitis‑like skin lesions. In addition, the serum IgE levels were reduced in the arazyme‑treated NC/Nga mice relative to the DNCB group. Collectively, these results indicated that arazyme attenuates the development of atopic dermatitis‑like lesions via lowering the levels of IgE and inflammatory cytokines. The results of the present study will aid in the development of effective therapeutic strategies for the treatment of allergic diseases, including atopic dermatitis.
    Molecular Medicine Reports 01/2015; DOI:10.3892/mmr.2015.3225 · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the anti-diabetic effect of EASL in C57BL/6J mice with high-fat diet (HFD)-induced type 2 diabetes. Mice were randomly divided into normal diet (ND), HFD (60 kcal% fat diet), EASL (HFD with 0.56% (wt/wt) EASL), and Pinitol (HFD with 0.15% (wt/wt) pinitol) groups. Weight gain and abdominal fat accumulation were significantly suppressed by EASL. Levels of plasma glucose, HbA1c, and insulin in the EASL group were significantly lower than those of the HFD group, and the pancreatic islet of the EASL group had greater size than those of the HFD group. EASL group up-regulated neurogenin 3 (Ngn3), paired box 4 (Pax4), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which are markers of pancreatic cell development, as well as insulin receptor substrate 1 (IRS1), IRS2, and glucose transporter 4 (GLUT4), which are related to insulin sensitivity. Furthermore, EASL suppressed genes involved in hepatic gluconeogenesis and steatosis. These results suggest that EASL improves plasma glucose and insulin levels in mice with HDF-induced type 2 diabetes by regulating β-cell proliferation and insulin sensitivity.
    Molecules 11/2014; 19(11):18493-510. DOI:10.3390/molecules191118493 · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gene (1350-bp) encoding a modular β-1,4-xylanase (XylU), which consists of an N-terminal catalytic GH10 domain and a C-terminal carbohydrate-binding module 2 (CBM 2), from Streptomyces mexicanus HY-14 was cloned and functionally characterized. The purified His-tagged recombinant enzyme (rXylU, 44.0 kDa) was capable of efficiently hydrolyze diverse xylosidic compounds, p-nitrophenyl-cellobioside, and p-nitrophenyl-xylopyranoside when incubated at pH 5.5 and 65°C. Especially, the specific activities (649.8 U/mg and 587.0 U/mg, respectively) of rXylU toward oat spelts xylan and beechwood xylan were relatively higher than those (<500.0 U/mg) of many other GH10 homologs toward the same substrates. The results of enzymatic degradation of birchwood xylan and xylooligosaccharides (xylotriose to xylohexaose) revealed that rXylU preferentially hydrolyzed the substrates to xylobiose (>75%) as the primary degradation product. Moreover, a small amount (4%<) of xylose was detected as the degradation product of the evaluated xylosidic substrates, indicating that rXylU was a peculiar GH10 β-1,4-xylanase with substrate specificity, which was different from its retaining homologs. A significant reduction of the binding ability of rXylU caused by deletion of the C-terminal CBM 2 to various insoluble substrates strongly suggested that the additional domain might considerably contribute to the enzyme-substrate interaction.
    The Journal of Microbiology 10/2014; 52(10):863-70. DOI:10.1007/s12275-014-4390-8 · 1.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The XylH gene (1167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that ofof an endo-β-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-β-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multi-functional enzyme possessing endo-beta-1,4-xylanase activity together with beta-1,3/beta-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylose-based polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arazyme is a novel extracellular metalloprotease secreted by Aranicola proteolyticus. Endothelial cells are involved in the pathogenesis of a number of inflammatory diseases, induce uncontrolled cell viability and express various inflammatory mediators, including cytokines, chemokines, adhesion molecules and reactive oxygen species (ROS). In the current study, human umbilical vein endothelilal cells (HUVECs) were used to investigate the anti‑inflammatory effects of arazyme following lipopolysaccharide (LPS) stimulation. Apoptosis of HUVECs due to LPS was inhibited by arazyme. In various inflammatory responses induced by LPS, arazyme inhibited the secretion of the monocyte chemoattractant protein‑1 and interleukin‑6, and the expression of vascular cell adhesion molecule‑1 and intercellular adhesion molecule‑1. Arazyme also suppressed ROS production in HUVECs. The action of arazyme was not associated with NF‑κB activity in HUVECs. These results indicate that arazyme has anti‑inflammatory properties in inflamed endothelial cells and may be useful as a therapeutic agent for inflammatory diseases associated with endothelial cells.
    Molecular Medicine Reports 05/2014; 10(2). DOI:10.3892/mmr.2014.2231 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The XylP gene, which encodes endoxylanase in Bacillus sp. HY-20, was subcloned, and two expression plasmids, pG-xylP and pGMF-xylP were constructed. These plasmids, which contain different signal sequences, XylP s.s and s.s, respectively, for the secretory expression of endoxylanase, were transformed into Saccharomyces cerevisiae SEY2102 and FY833, respectively. The recombinant endoxylanases were successfully expressed, with a total activity range of 23.7-70.1 unit/ml according to the expression system and host strain. The endoxylanase activity in SEY2102/pGMF-xylP reached a maximum of 88.1 unit/ml in baffled flask culture. Most of the recombinant endoxylanase was efficiently secreted in the extracellular fraction, and the s.s was more efficient for secreting endoxylanase in yeast than the XylP s.s. Therefore, the expression system developed in this study produces large extracellular amounts of endoxylanase using S. cerevisiae as the host strain, and it could be used in bioethanol production and industrial applications.
    07/2013; 23(7). DOI:10.5352/JLS.2013.23.7.863
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the inhibitory effect of arazyme on allergic inflammation was investigated by evaluating the alteration of cytokine production and expression of skin barrier proteins in immune and HaCaT human keratinocyte cells. THP‑1 human monocytic and EoL‑1 human eosinophilic cells were treated with Dermatophagoides pteronissinus extract (DpE). Monocyte chemotactic protein‑1 (MCP‑1)/CCL2, interleukin (IL)‑6 and IL‑8 increased following DpE treatment and arazyme significantly blocked the increase of MCP‑1, IL‑6 and IL‑8 expression in cell types. Secretion of MCP‑1, IL‑6 and IL‑8 induced by lipopolysaccharide in THP‑1 cells was also inhibited by arazyme treatment. Arazyme inhibited the secretion of IL‑6 and IL‑8 due to phorbol 12‑myristate 13‑acetate and calcium ionophores in human mast cells. Arazyme blocked the secretion of thymus and activation‑regulated chemokine (TARC)/CCL17, MCP‑1, IL‑6 and IL‑8 due to tumor necrosis factor‑α (TNF‑α) and interferon‑γ (IFN‑γ) in HaCaT cells. TNF‑α and IFN‑γ suppressed the expression of skin barrier proteins, including filaggrin, involucrin and loricrin. By contrast, arazyme increased the expression of filaggrin, involucrin and loricrin. These results may contribute to the development of a therapeutic drug for the treatment of allergic diseases, including atopic dermatitis.
    Molecular Medicine Reports 06/2013; 8(2). DOI:10.3892/mmr.2013.1520 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential of non-ionic polysorbate surfactants as alternative inducers of medium-chain-length poly(3-hydroxyalkanoates) (MCL-PHAs) for the production of diverse bacterial MCL-PHA depolymerases was evaluated. When grown with corn oil as the sole carbon substrate, Pseudomonas alcaligenes LB19 preferentially produced lipolytic enzymes, but its MCL-PHA depolymerase was not induced by the substrate. However, the results of activity staining and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis clearly revealed that Tween 20 induced simultaneous production of lipolytic enzymes and the MCL-PHA depolymerase with the molecular mass (26.5 kDa) of P. alcaligenes LB19, which has been previously identified. Moreover, the co-production of two functionally distinct hydrolytic enzymes induced by Tween 20 was commonly observed in various Gram-positive and Gram-negative bacteria that were fed the substrate. Thus, it is expected that non-ionic polysorbate surfactants including Tween 20 can be widely exploited as promising universal substrates for the facile and efficient production of diverse MCL-PHA depolymerases.
    Bioresource Technology 07/2012; 121:47-53. DOI:10.1016/j.biortech.2012.06.118 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gene (2304-bp) encoding a novel xylanolytic enzyme (XylK2) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 β-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylK2ΔFn3-CBM 2 displayed high transferase activity (788.3 IU mg(-1)) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylK2ΔFn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-β-1,4-xylanase activity of XylK2ΔFn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50mM xylobiose.
    Bioresource Technology 03/2012; 107:25-32. DOI:10.1016/j.biortech.2011.12.106 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strains RU-16(T), RU-28, RU-04(T) and PU-02(T) were isolated from the gut of the African mole cricket, Gryllotalpa africana. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belonged to the family Microbacteriaceae. All four strains were most closely related to Curtobacterium ginsengisoli DCY26(T) (below 97 % 16S rRNA gene sequence similarity). These isolates were Gram-stain-positive, motile (by gliding), rod-shaped and exhibited ivory-coloured colonies. Their chemotaxonomic properties included MK-11 as the major respiratory quinone, ornithine as the cell-wall diamino acid, acetyl as the acyl type of the peptidoglycan, cyclohexyl-C(17 : 0) as the major fatty acid and phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, we propose a new genus in the family Microbacteriaceae, Gryllotalpicola gen. nov., with three novel species, Gryllotalpicola daejeonensis sp. nov. (type strain RU-04(T)  = KCTC 13809(T)  = JCM 17590(T)), Gryllotalpicola koreensis sp. nov. (type strain RU-16(T)  = KCTC 13810(T)  = JCM 17591(T)) and Gryllotalpicola kribbensis sp. nov. (type strain PU-02(T)  = KCTC 13808(T)  = JCM 17593(T)). Gryllotalpicola koreensis is the type species of the genus. Additionally, we propose that Curtobacterium ginsengisoli should be reclassified in the genus as Gryllotalpicola ginsengisoli comb. nov. (type strain DCY26(T)  = KCTC 13163(T)  = JCM 14773(T)).
    International Journal of Systematic and Evolutionary Microbiology 11/2011; 62(Pt 10):2363-70. DOI:10.1099/ijs.0.034678-0 · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gene (1272-bp) encoding a β-1,4-mannanase from a gut bacterium of Eisenia fetida, Cellulosimicrobium sp. strain HY-13 was cloned and expressed in Escherichia coli. The recombinant β-1,4-mannanase (rManH) was approximately 44.0 kDa and has a catalytic GH5 domain that is 65% identical to that of the Micromonospora sp. β-1,4-mannosidase. The enzyme exhibited the highest catalytic activity toward mannans at 50 °C and pH 6.0. rManH displayed a high specific activity of 14,711 and 8498 IU mg⁻¹ towards ivory nut mannan and locust bean gum, respectively; however it could not degrade the structurally unrelated polysaccharides, mannobiose, or p-nitrophenyl sugar derivatives. rManH was strongly bound to ivory nut mannan, Avicel, chitosan, and chitin but did not attach to curdlan, insoluble oat spelt xylan, lignin, or poly(3-hydroxybutyrate). The superior biocatalytic properties of rManH suggest that the enzyme can be exploited as an effective additive in the animal feed industry.
    Bioresource Technology 06/2011; 102(19):9185-92. DOI:10.1016/j.biortech.2011.06.073 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A xylanolytic gut bacterium isolated from Eisenia fetida, Cellulosimicrobium sp. strain HY-13, produced an extracellular glycoside hydrolase capable of efficiently degrading mannose-based substrates such as locust bean gum, guar gum, mannotetraose, and mannopentaose. The purified mannan-degrading enzyme (ManK, 34,926 Da) from strain HY-13 was found to have an N-terminal amino acid sequence of DEATTDGLHVVDD, which has not yet been identified. Under the optimized reaction conditions of 50°C and pH 7.0, ManK exhibited extraordinary high specific activities of 7109 IU/mg and 5158 IU/mg toward locust bean gum and guar gum, respectively, while the enzyme showed no effect on sugars substituted with p-nitrophenol and various non-mannose carbohydrates. Thin layer chromatography revealed that the enzyme degraded locust bean gum to mannobiose and mannotetraose. No detectable amount of mannose was produced from hydrolytic reactions with the substrates. ManK strongly attached to Avicel, β-cyclodextrin, lignin, and poly(3-hydroxybutyrate) granules, but not bound to chitin, chitosan, curdlan, or insoluble oat spelt xylan. The aforementioned characteristics of ManK suggest that it is a unique endo-β-1,4-mannanase without additional carbohydrolase activities, which differentiates it from other well-known carbohydrolases.
    04/2011; 48(4-5):365-70. DOI:10.1016/j.enzmictec.2010.12.013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The virulence against the two-spotted spider mite, Tetranychus urticae Koch, was evaluated with entomopathogenic fungus Paecilomyces lilacinus (Thom) Samson HY-4 which is isolated from coleopteran insect and registered to Korean and US patents. Virulence tests were conducted with conidial suspensions () of P. lilacinus HY-4 against T. urticae adults and positive results were recorded in laboratory conditions. The spraying device was also developed for the efficient and exact evaluation of treatment. The developed spraying device was named as SD-tower sprayer and its efficacy of spraying conidia was evaluated. The accumulated mortality caused by P. lilacinus HY-4 using SD-tower spray was about 73% at 6 days after inoculation. This suggest that the isolate P. lilacinus HY-4 may be considered as promising for a new approach to prevent adult infestations by T. urticae.
    03/2011; 22(1). DOI:10.7852/ijie.2011.22.1.25
  • [Show abstract] [Hide abstract]
    ABSTRACT: The novel intracellular GH10 xylanase (iXylC) gene (1023-bp) of Cohnella laeviribosi HY-21 encoded a protein consisting of 340 amino acids with a deduced molecular mass of 39,330Da and a calculated pI of 5.81. The primary structure of iXylC was 70% identical to that of Geobacillus sp. GH10 enzyme (GenBank accession number: EDV78425). Xylanolytic activity of the His-tagged iXylC overproduced in Escherichiacoli BL21 was stimulated by 2.2-fold in the presence of 0.5% non-ionic detergents. iXylC produced a mixture of xylooligosaccharides (xylobiose to xylooctaose) from xylotriose and xylotetraose used as the hydrolytic substrate. In addition, it exhibited considerable cleavage activities for p-nitrophenylxylopyranoside (PNP-xylopyranoside) and PNP-cellobioside, indicating that iXylC is a unique GH10 enzyme. The hydrolytic activity (57.8IUmL(-1)) of iXylC toward PNP-xylopyranoside increased to 8.3-fold by W217A and W315A mutations, while mutations of W133A, W295A, and W303A abolished the hydrolytic activity of the enzyme.
    Bioresource Technology 11/2010; 101(22):8814-21. DOI:10.1016/j.biortech.2010.06.023 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas fulva TY16 biosynthesized medium-chain-length poly(3-hydroxyalkanoates) (MCL-PHAs) containing unsaturated 3-hydroxydodecenoate unit (approximately 8-9%) when grown with volatile aromatic compounds including benzene, toluene, and ethylbenzene as sole carbon substrate. In particular, when cultivated using a continuous feeding system designed to supply toluene at a flow rate of 0.42gL(-1)h(-1) into a 7-L jar fermentor, the growth of the organism reached up to approximately 3.87gL(-1) after the 48h fed-batch fermentation, representing an accumulated cellular MCL-PHA of 58.9% by weight. The obtained MCL-PHA was a copolyester primarily consisting of 3-hydroxydecanoate (55.2%) and 3-hydroxyoctanoate (26.8%) with minor constituents being 3-hydroxyhexanoate (3.7%), 3-hydroxydodecenoate (8.2%), and 3-hydroxydodecanoate (6.1%). The present results suggest that P. fulva TY16 is a promising candidate for the biotechnological conversion of toxic petrochemical wastes to valuable biopolymers.
    Bioresource Technology 11/2010; 101(21):8485-8. DOI:10.1016/j.biortech.2010.06.033 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel GH10 endo-β-1,4-xylanase (XylG) gene from Streptomyces thermocarboxydus HY-15, which was isolated from the gut of Eisenia fetida, was cloned, over-expressed, and characterized. The XylG gene (1182 bp) encoded a polypeptide of 393 amino acids with a deduced molecular mass of 43,962 Da and a calculated pI of 6.74. The primary structure of XylG was 69% similar to that of Thermobifida fusca YX endo-β-1,4-xylanase. It was most active at pH 6.0 and 55 °C. The susceptibilities of xylans to XylG were as follows: oat spelt xylan > birchwood xylan > beechwood xylan. The XylG also showed high activity (474 IU/mg) toward p-nitrophenylcellobioside. Moreover, at pH 6.0 and 50 °C, the Vmax and Km values of the XylG were 127 IU/mg and 2.51 mg/ml, respectively, for oat spelt xylan and 782 IU/mg and 5.26 mM, respectively, for p-nitrophenylcellobioside. A homology model indicated that XylG folded to form a (β/α)8-barrel with two catalytic residues of an acid/base (Glu181) and a nucleophile (Glu289). The formation of a disulfide bond between Cys321 and Cys327 were predicted by homology modeling.
    Journal of Molecular Catalysis B Enzymatic 01/2010; 62(1-62):32-39. DOI:10.1016/j.molcatb.2009.08.015 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia sp. IS-01 capable of biosynthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)] copolyesters with a high molar fraction of 3HV was isolated from the gut of the adult longicorn beetle, Moechotypa diphysis. The strain IS-01 was relatively tolerant to high concentrations of levulinic acid and accumulated a poly(13.5 mol% 3HB-co-86.5 mol% 3HV) copolyester when cultivated on a mixture of gluconate (20 g/L) and levulinic acid (12.5 g/L). In this case, the content of the copolyester in the cells was approximately 60.0%. The compositions of the copolyesters were easily regulated by altering the molar ratio of gluconate and levulinic acid in the medium. The organism was found to possess a class I PHA synthase (PhaC) gene (1,881 bp) that encodes a protein with a deduced molecular mass of 68,538 Da that consists of 626 amino acids. The PhaC of this organism was most similar to that of B. cenocepacia PC184 (92% similarity).
    The Journal of Microbiology 10/2009; 47(5):651-6. DOI:10.1007/s12275-009-0109-7 · 1.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A xylanolytic bacterium, Cellulosimicrobium sp. HY-13, was isolated from the digestive tract of an earthworm, Eisenia fetida. The purified cellulase-free endo-β-1,4-xylanase (XylK) produced by strain HY-13 was found to contain an N-terminal amino acid sequence of APSTLEAAAE and to have a relative molecular mass of 36 kDa. It was most active at pH 6.0 and 55 °C and had Vmax and Km values toward oat spelt xylan of 4067 IU/mg and 2.78 mg/ml, respectively. XylK primarily degraded xylan to a series of xylooligosaccharides composed of xylobiose to xylotetraose, but it could not further hydrolyze xylobiose to xylose. The results of the present study suggest that the relatively highly active XylK lacking exo-xylanolytic activity is a promising candidate for the efficient production of non-digestible xylooligosaccharides that may have beneficial effects to gastrointestinal health via promotion of the growth of probiotics.
    Process Biochemistry 09/2009; 44(9):1055-1059. DOI:10.1016/j.procbio.2009.05.005 · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gene encoding a novel modular xylanase from Cellulosimicrobium sp. strain HY-13 was identified and expressed in Escherichia coli, and its truncated gene product was characterized. The enzyme consisted of three distinct functional domains, an N-terminal catalytic GH10 domain, a fibronectin type 3 domain, and C-terminal carbohydrate-binding module 2.
    Applied and Environmental Microbiology 09/2009; 75(22):7275-9. DOI:10.1128/AEM.01075-09 · 3.95 Impact Factor

Publication Stats

476 Citations
102.03 Total Impact Points


  • 2001–2015
    • Korea Research Institute of Bioscience and Biotechnology KRIBB
      • • Industrial Bio-materials Research Center
      • • Biological Resource Center
      • • National Research Laboratory of Lipid Metabolism and Atherosclerosis
      • • Insect Resources Laboratory
      Anzan, Gyeonggi-do, South Korea
    • Korea Advanced Institute of Science and Technology
      • Department of Chemistry
      Sŏul, Seoul, South Korea
  • 2006
    • Chungnam National University
      Daiden, Daejeon, South Korea
  • 2005
    • Kyungpook National University
      • College of Veterinary Medicine
      Daikyū, Daegu, South Korea