Stephanie Bringer-Meyer

Cornell University, Ithaca, New York, United States

Are you Stephanie Bringer-Meyer?

Claim your profile

Publications (45)125.91 Total impact

    [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 08/2010; 29(31). DOI:10.1002/chin.199831225
  • Source
    Ute Schleyer · Stephanie Bringer-Meyer · Hermann Sahm ·

    International Journal of Food Microbiology 03/2009; 130(1):76. DOI:10.1016/j.ijfoodmicro.2008.09.014 · 3.08 Impact Factor
  • Tina Hölscher · Ute Schleyer · Marcel Merfort · Stephanie Bringer-Meyer · Helmut Görisch · Hermann Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Gluconobacter oxydans is famous for its rapid and incomplete oxidation of a wide range of sugars and sugar alcohols. The organism is known for its efficient oxidation of D-glucose to D-gluconate, which can be further oxidized to two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, as well as 2,5-di-keto-D-gluconate. For this oxidation chain and for further oxidation reactions, G. oxydans possesses a high number of membrane-bound dehydrogenases. In this review, we focus on the dehydrogenases involved in D-glucose oxidation and the products formed during this process. As some of the involved dehydrogenases contain pyrroloquinoline quinone (PQQ) as a cofactor, also PQQ synthesis is reviewed. Finally, we will give an overview of further PQQ-dependent dehydrogenases and discuss their functions in G. oxydans ATCC 621H (DSM 2343).
    Journal of Molecular Microbiology and Biotechnology 02/2009; 16(1-2):6-13. DOI:10.1159/000142890 · 2.10 Impact Factor
  • Ute Schleyer · Stephanie Bringer-Meyer · Hermann Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Gluconobacter oxydans is known for causing rapid and incomplete oxidation of a wide range of sugars, sugar acids and sugar alcohols. Therefore, this microorganism is already employed in several biotechnological processes that involve incomplete oxidation of a substrate, e.g. vitamin C or dihydroxyacetone production. To fully exploit the oxidative potential of G. oxydans, characterization of the biological role of gene products is essential. To take advantage of the genome sequence of G. oxydans DSM 2343, based on pBBR1MCS5, we constructed a new cloning and expression vector. The newly established vector pEXGOX will significantly decrease duration of cloning and increase cloning efficiency. It has the following advantages: (i) small size (5.7 kbp); (ii) complete sequence; (iii) variety of unique restriction sites; (iv) direct cloning of PCR products; (v) strong promoter. The pEXGOX plasmid was successfully used to clone G. oxydans genes and has the potential to facilitate studies of gene function of several G. oxydans open reading frames.
    International Journal of Food Microbiology 07/2008; 125(1):91-5. DOI:10.1016/j.ijfoodmicro.2007.04.016 · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reduction of methyl acetoacetate was carried out in continuously operated biotransformation processes catalyzed by recombinant Escherichia coli cells expressing an alcohol dehydrogenase from Lactobacillus brevis. Three different cell types were applied as biocatalysts in three different cofactor regeneration approaches. Both processes with enzyme-coupled cofactor regeneration catalyzed by formate dehydrogenase or glucose dehydrogenase are characterized by a rapid deactivation of the biocatalyst. By contrast the processes with substrate-coupled cofactor regeneration by alcohol dehydrogenase catalyzed oxidation of 2-propanol could be run over a period of 7 weeks with exceedingly high substrate and cosubstrate concentrations of up to 2.5 and 2.8 mol L(-1), respectively. Even under these extreme conditions, the applied biocatalyst showed a good stability with only marginal leakage of intracellular cofactors.
    Journal of Biotechnology 01/2008; 132(4):438-44. DOI:10.1016/j.jbiotec.2007.08.003 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An in vivo system was developed for the biotransformation of D-fructose into D-mannitol by the expression of the gene mdh encoding mannitol dehydrogenase (MDH) from Leuconostoc pseudomesenteroides ATCC12291 in Bacillus megaterium. The NADH reduction equivalents necessary for MDH activity were regenerated via the oxidation of formate to carbon dioxide by coexpression of the gene fdh encoding Mycobacterium vaccae N10 formate dehydrogenase (FDH). High-level protein production of MDH in B. megaterium required the adaptation of the corresponding ribosome binding site. The fdh gene was adapted to B. megaterium codon usage via complete chemical gene synthesis. Recombinant B. megaterium produced up to 10.60 g/L D-mannitol at the shaking flask scale. Whole cell biotransformation in a fed-batch bioreactor increased D-mannitol concentration to 22.00 g/L at a specific productivity of 0.32 g D-mannitol (gram cell dry weight)(-1) h(-1) and a D-mannitol yield of 0.91 mol/mol. The nicotinamide adenine dinucleotide (NAD(H)) pool of the B. megaterium producing D-mannitol remained stable during biotransformation. Intra- and extracellular pH adjusted itself to a value of 6.5 and remained constant during the process. Data integration revealed that substrate uptake was the limiting factor of the overall biotransformation. The information obtained identified B. megaterium as a useful production host for D-mannitol using a resting cell biotransformation approach.
    Biotechnology Journal 11/2007; 2(11):1408-1416. DOI:10.1002/biot.200700055 · 3.49 Impact Factor
  • Carsten Bäumchen · Stephanie Bringer-Meyer ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)(-1) h(-1). Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)(-1) h(-1), yielding 87 g l(-1) D-mannitol from 93.7 g l(-1) D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD(+) ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l(-1) D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)(-1) h(-1) was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells.
    Applied Microbiology and Biotechnology 10/2007; 76(3):545-52. DOI:10.1007/s00253-007-0987-8 · 3.34 Impact Factor
  • Cornelia Gätgens · Ursula Degner · Stephanie Bringer-Meyer · Ute Herrmann ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The genus Gluconobacter is well known for its rapid and incomplete oxidation of a wide range of substrates. Therefore, Gluconobacter oxydans especially is used for several biotechnological applications, e.g., the efficient oxidation of glycerol to dihydroxyacetone (DHA). For this reaction, G. oxydans is equipped with a membrane-bound glycerol dehydrogenase that is also described to oxidize sorbitol, gluconate, and arabitol. Here, we demonstrated the impact of sldAB overexpression on glycerol oxidation: Beside a beneficial effect on the transcript level of the sldB gene, the growth on glycerol as a carbon source was significantly improved in the overexpression strains (OD 2.8 to 2.9) compared to the control strains (OD 2.8 to 2.9). Furthermore, the DHA formation rate, as well as the final DHA concentration, was affected so that up to 350 mM of DHA was accumulated by the overexpression strains when 550 mM glycerol was supplied (control strain: 200 to 280 mM DHA). Finally, we investigated the effect on sldAB overexpression on the G. oxydans transcriptome and identified two genes involved in glycerol metabolism, as well as a regulator of the LysR family.
    Applied Microbiology and Biotechnology 10/2007; 76(3):553-9. DOI:10.1007/s00253-007-1003-z · 3.34 Impact Factor
  • Source

    Chemie Ingenieur Technik 09/2007; 79(9):1286-1286. DOI:10.1002/cite.200750249 · 0.66 Impact Factor
  • Stefan Bräutigam · Stephanie Bringer-Meyer · Dirk Weuster-Botz ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionic liquids such as [BMIM][PF6] and [BMIM][NTF] are already known as good alternatives to organic solvents in biphasic biotransformation. Herein, we report about a systematic procedure based on physical properties to identify more commercially available ionic liquids exhibiting the potential to improve the efficiency of whole cell biocatalyses. This approach resulted in the identification of seven other water immiscible ionic liquids. These ionic liquids were rated by their biocompatibility, their substrate- and product-specific distribution coefficients and by for example performed asymmetric reductions of several prochiral ketones. With the use of a recombinant Escherichia coli as biocatalyst, overproducing a Lactobacillus brevis alcohol dehydrogenase and a Mycobacterium vaccae N10 formate dehydrogenase for cofactor regeneration, the great potential of asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems were demonstrated in simple batch processes.
    Tetrahedron Asymmetry 08/2007; 18(16):1883-1887. DOI:10.1016/j.tetasy.2007.08.003 · 2.16 Impact Factor
  • F. Heuser · K. Schroer · S. Lütz · S. Bringer-Meyer · H. Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In pyridine nucleotide-dependent, reductive whole cell biotransformation with resting cells of Escherichia coli, the availability of intracellular NAD(P)(H) is a pivotal point for an efficient and highly productive substrate conversion. The question whether an increase of the intracellular NAD(P)(H) concentration could increase the productivity was discussed controversially in the past. This is the first report on an E. coli strain with an increased NAD(P)(H) pool which was tested in a reductive biotransformation system for an increased productivity. Biotransformation was performed with a strain overexpressing a gene encoding an (R)-specific alcohol dehydrogenase for the stereospecific, NADPH-dependent reduction of methyl acetoacetate (MAA) to (R)-methyl-3-hydroxybutanoate (MHB). Cofactor regeneration was implemented via glucose oxidation by coexpression of a gene encoding glucose dehydrogenase. The specific MHB productivity (mmol mg–1 cell dry weight–1h–1) enabled a comparison between the E. coli BL21(DE3) wild-type and a genetically modified strain. The enhancement of the NAD(P)(H) pool was achieved by genetic manipulation of the NAD(H) biosynthetic pathways. After simultaneous overexpression of the pncB and nadE genes, encoding nicotinic acid phosphoribosyltransferase and NAD synthetase, measurements of the total NAD(P)(H) pool, sizes showed a 7-fold and 2-fold increased intracellular concentration of NAD(H) and NADP(H), respectively. However, the implementation of an E. coli strain carrying a genomically integrated pncB gene with an upstream T7 promoter for biotransformation did not result in reproducible increased specific cell productivity.
    Engineering in Life Sciences 07/2007; 7(4):343 - 353. DOI:10.1002/elsc.200720203 · 2.49 Impact Factor
  • Marcel Merfort · Ute Herrmann · Stephanie Bringer-Meyer · Hermann Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Gluconobacter oxydans DSM 2343 is known to catalyze the oxidation of glucose to gluconic acid, and subsequently, to 2-keto-D-gluconic acid (2-KGA) and 5-keto-D-gluconic acid (5-KGA), by membrane-bound and soluble dehydrogenases. In G. oxydans MF1, in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated, formation of the undesired 2-KGA was absent. This mutant strain uniquely accumulates high amounts of 5-KGA in the culture medium. To increase the production rate of 5-KGA, which can be converted to industrially important L-(+)-tartaric acid, we equipped G. oxydans MF1 with plasmids allowing the overproduction of the soluble and the membrane-bound 5-KGA-forming enzyme. Whereas the overproduction of the soluble gluconate:NADP 5-oxidoreductase resulted in the accumulation of up to 200 mM 5-KGA, the detected 5-KGA accumulation was even higher when the gene coding for the membrane-bound gluconate-5-dehydrogenase was overexpressed (240 to 295 mM 5-KGA). These results provide a basis for designing a biotransformation process for the conversion of glucose to 5-KGA using the membrane-bound as well as the soluble enzyme system.
    Applied Microbiology and Biotechnology 12/2006; 73(2):443-51. DOI:10.1007/s00253-006-0467-6 · 3.34 Impact Factor
  • Source
    Christoph Bremus · Ute Herrmann · Stephanie Bringer-Meyer · Hermann Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: L-Ascorbic acid has been industrially produced for around 70 years. Over the past two decades, several innovative bioconversion systems have been proposed in order to simplify the long time market-dominating Reichstein method, a largely chemical synthesis by which still a considerable part of L-ascorbic acid is produced. Here, we describe the current state of biotechnological alternatives using bacteria, yeasts, and microalgae. We also discuss the potential for direct production of l-ascorbic acid exploiting novel bacterial pathways. The advantages of these novel approaches competing with current chemical and biotechnological processes are outlined.
    Journal of Biotechnology 07/2006; 124(1):196-205. DOI:10.1016/j.jbiotec.2006.01.010 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gluconobacter oxydans DSM 2343 (ATCC 621H)catalyzes the oxidation of glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of the industrially important L-(+)-tartaric acid. To further increase 5-KGA production in G. oxydans, the mutant strain MF1 was used. In this strain the membrane-bound gluconate-2-dehydrogenase activity, responsible for formation of the undesired by-product 2-keto-D-gluconic acid, is disrupted. Therefore, high amounts of 5-KGA accumulate in the culture medium. G. oxydans MF1 was equipped with plasmids allowing the overexpression of the membrane-bound enzymes involved in 5-KGA formation. Overexpression was confirmed on the transcript and enzymatic level. Furthermore, the resulting strains overproducing the membrane-bound glucose dehydrogenase showed an increased gluconic acid formation, whereas the overproduction of gluconate-5-dehydrogenase resulted in an increase in 5-KGA of up to 230 mM. Therefore, these newly developed recombinant strains provide a basis for further improving the biotransformation process for 5-KGA production.
    Biotechnology Journal 05/2006; 1(5):556-63. DOI:10.1002/biot.200600032 · 3.49 Impact Factor
  • Björn Kaup · Stephanie Bringer-Meyer · Hermann Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we reported on the construction of a whole-cell biotransformation system in Escherichia coli for the production of D: -mannitol from D: -fructose. Supplementation of this strain with extracellular glucose isomerase resulted in the formation of 800 mM D: -mannitol from 1,000 mM D: -glucose. Co-expression of the xylA gene of E. coli in the biotransformation strain resulted in a D: -mannitol concentration of 420 mM from 1,000 mM D: -glucose. This is the first example of conversion of D: -glucose to D: -mannitol with direct coupling of a glucose isomerase to the biotransformation system.
    Applied Microbiology and Biotechnology 01/2006; 69(4):397-403. DOI:10.1007/s00253-005-1996-0 · 3.34 Impact Factor
  • Hermann Sahm · Stephanie Bringer-Meyer · Georg A. Sprenger ·
    [Show abstract] [Hide abstract]
    ABSTRACT: HabitatZymomonas mobilis has been reported mainly from tropical and subtropical habitats, e.g., sugar-rich, plant saps from agave (Mexico; Lindner, 1928), sugar cane (Brazil and Fiji Islands; reviewed in Falcao de Morais et al., 1993), and palm wine from central Africa (Swings and De Ley, 1977). Other sources of this organism include fermenting sugarcane juice (Goncalves de Lima et al., 1970), fermenting cocoa beans (Ostovar and Keeney, 1973), and bees and ripening honey (Ruiz-Argueso and Rodriguez-Navarro, 1975). In Europe, Z. mobilis also appeared in spoiled beer and cider. One of the first written descriptions of “cider sickness” was presented by Lloyd (1903), in which he noted the presence of “sulphuretted hydrogen” in spoiled ciders. Barker and Hillier (1912) were the first to study cider sickness extensively and gave a description of the responsible bacterium. Cider sickness is recognized by frothing and abundant gas formation, a typical change in the aroma and flavor, red ...
    The Prokaryotes, 01/2006: pages 201-221; , ISBN: 978-0-387-25495-1
  • Marianne Ernst · Björn Kaup · Michael Müller · Stephanie Bringer-Meyer · Hermann Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: A whole-cell biotransformation system for the reduction of prochiral carbonyl compounds, such as methyl acetoacetate, to chiral hydroxy acid derivatives [methyl (R)-3-hydroxy butanoate] was developed in Escherichia coli by construction of a recombinant oxidation/reduction cycle. Alcohol dehydrogenase from Lactobacillus brevis catalyzes a highly regioselective and enantioselective reduction of several ketones or keto acid derivatives to chiral alcohols or hydroxy acid esters. The adh gene encoding for the alcohol dehydrogenase of L. brevis was expressed in E. coli. As expected, whole cells of the recombinant strain produced only low quantities of methyl (R)-3-hydroxy butanoate from the substrate methyl acetoacetate. Therefore, the fdh gene from Mycobacterium vaccae N10, encoding NAD+-dependent formate dehydrogenase, was functionally coexpressed. The resulting two-fold recombinant strain exhibited an in vitro catalytic alcohol dehydrogenase activity of 6.5 units mg-1 protein in reducing methyl acetoacetate to methyl (R)-3-hydroxy butanoate with NADPH as the cofactor and 0.7 units mg-1 protein with NADH. The in vitro formate dehydrogenase activity was 1.3 units mg-1 protein. Whole resting cells of this strain catalyzed the formation of 40 mM methyl (R)-3-hydroxy butanoate from methyl acetoacetate. The product yield was 100 mol% at a productivity of 200 micromol g-1 (cell dry weight) min-1. In the presence of formate, the intracellular [NADH]/[NAD+] ratio of the cells increased seven-fold. Thus, the functional overexpression of alcohol dehydrogenase in the presence of formate dehydrogenase was sufficient to enable and sustain the desired reduction reaction via the relatively low specific activity of alcohol dehydrogenase with NADH, instead of NADPH, as a cofactor.
    Applied Microbiology and Biotechnology 04/2005; 66(6):629-34. DOI:10.1007/s00253-004-1765-5 · 3.34 Impact Factor
  • S. Bringer-Meyer · M. Ernst · B. Kaup · M. Müller · H. Sahm ·

    Chemie Ingenieur Technik 09/2004; 76(9):1240-1240. DOI:10.1002/cite.200490091 · 0.66 Impact Factor
  • Stefano Ricagno · Sigrid Grolle · Stephanie Bringer-Meyer · Hermann Sahm · Ylva Lindqvist · Gunter Schneider ·
    [Show abstract] [Hide abstract]
    ABSTRACT: 1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes.
    Biochimica et Biophysica Acta 05/2004; 1698(1):37-44. DOI:10.1016/j.bbapap.2003.10.006 · 4.66 Impact Factor
  • U Herrmann · M Merfort · M Jeude · S Bringer-Meyer · H Sahm ·
    [Show abstract] [Hide abstract]
    ABSTRACT: For the conversion of glucose to 5-keto-D-gluconate (5-KGA), a precursor of the industrially important L-(+)-tartaric acid, Gluconobacter strains were genetically engineered. In order to increase 5-KGA formation, a plasmid-encoded copy of the gene encoding the gluconate:NADP-5 oxidoreductase (gno) was overexpressed in G. oxydans strain DSM 2434. This enzyme is involved in the nonphosphorylative ketogenic oxidation of glucose and oxidizes gluconate to 5-KGA. As the 5-KGA reductase activity depends on the cofactor NADP+, the sthA gene (encoding Escherichia coli transhydrogenase) was cloned and overexpressed in the GNO-overproducing G. oxydans strain. Growth of the sthA-carrying strains was indistinguishable from the G. oxydans wild-type strain and therefore they were chosen for the coupled overexpression of sthA and gno. G. oxydans strain DSM 2343/pRS201-gno-sthA overproducing both enzymes showed an enhanced accumulation of 5-KGA.
    Applied Microbiology and Biotechnology 04/2004; 64(1):86-90. DOI:10.1007/s00253-003-1455-8 · 3.34 Impact Factor

Publication Stats

2k Citations
125.91 Total Impact Points


  • 2010
    • Cornell University
      Ithaca, New York, United States
  • 1990-2009
    • Forschungszentrum Jülich
      • Institute of Bio- and Geosciences (IBG)
      Jülich, North Rhine-Westphalia, Germany
  • 1995
    • Forschungszentrum für Medizintechnik und Biotechnologie GmbH
      Langensalza, Thuringia, Germany