Richard A Koup

National Institute of Allergy and Infectious Diseases, 베서스다, Maryland, United States

Are you Richard A Koup?

Claim your profile

Publications (334)3080.9 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Follicular helper T (Tfh) cells within secondary lymphoid organs control multiple steps of B cell maturation and antibody (Ab) production. HIV-1 infection is associated with an altered B cell differentiation and Tfh isolated from lymph nodes of HIV-infected (HIV+) individuals provide inadequate B cell help in vitro. However, the mechanisms underlying this impairment of Tfh function are not fully defined. Using a unique collection of splenocytes, we compared the frequency, phenotype and transcriptome of Tfh subsets in spleens from HIV negative (HIV-) and HIV+ subjects. We observed an increase of CXCR5+PD-1highCD57-Tfh and germinal center (GC) CD57+ Tfh in HIV+ spleens. Both subsets showed a reduced mRNA expression of the transcription factor STAT-3, co-stimulatory, regulatory and signal transduction molecules as compared to HIV- spleens. Similarly, Foxp3 expressing follicular regulatory T (Tfr) cells were increased, suggesting sustained GC reactions in chronically HIV+ spleens. As a consequence, GC B cell populations were expanded, however, complete maturation into memory B cells was reduced in HIV+ spleens where we evidenced a compromised production of B cell-activating cytokines such as IL-4 and IL-10. Collectively our data indicate that, although Tfh proliferation and GC reactions seem to be ongoing in HIV-infected spleens, Tfh "differentiation" and expression of costimulatory molecules is skewed with a profound effect on B cell maturation.
    PLoS ONE 10/2015; 10(10):e0140978. DOI:10.1371/journal.pone.0140978 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The treatment of AIDS with combination antiretroviral therapy (cART) remains lifelong largely because the virus persists in latent reservoirs. Elimination of latently infected cells could therefore reduce treatment duration and facilitate immune reconstitution. Here we report an approach to reduce the viral reservoir by activating dormant viral gene expression and directing T lymphocytes to lyse previously latent, HIV-1-infected cells. An immunomodulatory protein was created that combines the specificity of a HIV-1 broadly neutralizing antibody with that of an antibody to the CD3 component of the T-cell receptor. CD3 engagement by the protein can stimulate T-cell activation that induces proviral gene expression in latently infected T cells. It further stimulates CD8 T-cell effector function and redirects T cells to lyse these previously latent-infected cells through recognition of newly expressed Env. This immunomodulatory protein could potentially help to eliminate latently infected cells and deplete the viral reservoir in HIV-1-infected individuals.
    Nature Communications 10/2015; 6:8447. DOI:10.1038/ncomms9447 · 11.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Designing strategies for targeting antigens to dendritic cells is a major goal in vaccinology. Here, PLGA (poly lactic-co-glycolic acid) microspheres and with several surface modifications that affect to their uptake by human blood primary dendritic cells and monocytes have been evaluated. Higher uptake was found by all the cell types when cationic microspheres (PLGA modified with polyethylene imine) were used. These cationic particles were in vivo evaluated in mice. In addition, MPLA(1) or poly(I:C)(2) and α-GalCer(3) were also encapsulated to address their adjuvant effect. All the microspheres were able to produce humoral immune responses, albeit they were higher for cationic microspheres. Moreover, surface charge seemed to have a role on biasing the immune response; cationic microspheres induced higher IFN-γ levels, indicative of Th1 activation, while unmodified ones mainly triggered IL4 and IL17A release, showing Th2 activation. Thus, we have shown here the potential and versatility of these MS, which may be tailored to needs.
    International Journal of Pharmaceutics 10/2015; DOI:10.1016/j.ijpharm.2015.10.037 · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: VRC01 is a broadly neutralizing HIV-1 monoclonal antibody (mAb) isolated from the B-cells of an HIV-infected patient. It is directed against the HIV-1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV-1 strains. This Phase 1 dose-escalation study in healthy adults was conducted at the NIH Clinical Center (Bethesda MD). Primary objectives were safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (IV) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (SC) delivery at 5 mg/kg compared to SC placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and 9 placebo administrations. There were no serious adverse events or dose-limiting toxicities. Mean 28-day serum trough concentrations after the first infusion were 35 and 57 mcg/mL for groups infused with 20 mg/kg (n=8) and 40 mg/kg (n=5) doses, respectively. Mean 28-day trough concentrations after the second infusion were 56 and 89 mcg/mL for these same two doses. Over the 5-40 mg/kg IV dose range (n=18), the clearance was 0.016 L/h and terminal half-life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. The human mAb VRC01 was well-tolerated when delivered IV or SC. The mAb demonstrated expected half-life and pharmacokinetics for a human IgG. The safety and PK results support and inform VRC01 dosing schedules for planning HIV-1 prevention efficacy studies. This article is protected by copyright. All rights reserved. © 2015 British Society for Immunology.
    Clinical & Experimental Immunology 09/2015; DOI:10.1111/cei.12692 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses. Copyright © 2015 Elsevier Inc. All rights reserved. Full text can be found at Valid until October 16, 2015
    Cell 08/2015; DOI:10.1016/j.cell.2015.07.043 · 32.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Annual influenza vaccination reduces the risks of influenza when the vaccines are well matched to circulating strains, but development of an approach that induces broader and more durable immune responses would be beneficial. We conducted two companion Phase 1 studies, VRC 307 and VRC 309, over sequential seasons (2008-2009 and 2009-2010) in which only the influenza B strain component of the vaccines differed. Objectives were safety and immunogenicity of prime-boost vaccination schedules. A schedule of DNA vaccine encoding for seasonal influenza hemagglutinins (HA) prime followed by seasonal trivalent influenza inactivated vaccine (IIV3) boost (HA DNA-IIV3) was compared to placebo (PBS)-IIV3 or IIV3-IIV3. Cumulatively, 111 adults were randomized to HA DNA-IIV3 (n=66), PBS-IIV3 (n=25) or IIV3-IIV3 (n=20). Safety was assessed by clinical observations, laboratory parameters and 7-day solicited reactogenicity. The seasonal HA DNA prime-IIV3 boost regimen was evaluated as safe and well tolerated. There were no serious adverse events. The local and systemic reactogenicity for HA DNA, IIV and placebo were reported predominantly as none or mild within the first 5days post vaccination. There was no significant difference in immunogenicity detected between the treatment groups as evaluated by hemagglutination inhibition (HAI) assay. The studies demonstrated the safety and immunogenicity of seasonal HA DNA-IIV3 regimen, but the 3-4 week prime-boost interval was suboptimal for improving influenza-specific immune responses. This is consistent with observations in avian H5 DNA vaccine prime-boost studies in which a long interval, but not a short interval, was associated with improved immunogenicity. NCT00858611 for VRC 307 and NCT00995982 for VRC 309. Copyright © 2015. Published by Elsevier Inc.
    Contemporary clinical trials 08/2015; 44. DOI:10.1016/j.cct.2015.08.006 · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy.
    Science 08/2015; 349(6249):aab1253. DOI:10.1126/science.aab1253 · 33.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broadly neutralizing antibodies (bNAbs) protect against HIV-1 infection, yet how they are generated during chronic infection remains unclear. It is known that T follicular helper (TFH) cells are needed to promote affinity maturation of B cells during an immune response; however, the role of TFH during HIV-1 infection is undefined within lymph node germinal centers (GCs). We use nonhuman primates to investigate the relationship in the early stage of chronic SHIVAD8 (simian-human immunodeficiency virus AD8) infection between envelope (Env)-specific TFH cells, Env-specific B cells, virus, and the generation of bNAbs during later infection. We found that both the frequency and quality of Env-specific TFH cells were associated with an expansion of Env-specific immunoglobulin G-positive GC B cells and broader neutralization across HIV clades. We also found a correlation between breadth of neutralization and the degree of somatic hypermutation in Env-specific memory B cells. Finally, we observed high viral loads and greater diversity of Env sequences in rhesus macaques that developed cross-reactive neutralization as compared to those that did not. These studies highlight the importance of boosting high-quality TFH populations as part of a robust vaccine regimen aimed at eliciting bNabs. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 07/2015; 7(298). DOI:10.1126/scitranslmed.aab3964 · 15.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the RV144 vaccine trial, two antibody responses were found to correlate with HIV-1 acquisition. Because human leukocyte antigen (HLA) class II-restricted CD4(+) T cells are involved in antibody production, we tested whether HLA class II genotypes affected HIV-1-specific antibody levels and HIV-1 acquisition in 760 individuals. Indeed, antibody responses correlated with acquisition only in the presence of single host HLA alleles. Envelope (Env)-specific immunoglobulin A (IgA) antibodies were associated with increased risk of acquisition specifically in individuals with DQB1*06. IgG antibody responses to Env amino acid positions 120 to 204 were higher and were associated with decreased risk of acquisition and increased vaccine efficacy only in the presence of DPB1*13. Screening IgG responses to overlapping peptides spanning Env 120-204 and viral sequence analysis of infected individuals defined differences in vaccine response that were associated with the presence of DPB1*13 and could be responsible for the protection observed. Overall, the underlying genetic findings indicate that HLA class II modulated the quantity, quality, and efficacy of antibody responses in the RV144 trial. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 07/2015; 7(296):296ra112. DOI:10.1126/scitranslmed.aab4005 · 15.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlive vaccine platforms that induce potent cellular immune responses in mucosal tissue would have broad application for vaccines against infectious diseases and tumors. Induction of cellular immunity could be optimized by targeted activation of multiple innate and costimulatory signaling pathways, such as CD40 or TLRs. In this study, we evaluated immune activation and elicitation of T cell responses in nonhuman primates after immunization with peptide Ags adjuvanted with an agonistic anti-CD40Ab, with or without the TLR3 ligand poly IC:LC. We found that i.v. administration of the anti-CD40Ab induced rapid and transient innate activation characterized by IL-12 production and upregulated costimulatory and lymph node homing molecules on dendritic cells. Using fluorescently labeled Abs for in vivo tracking, we found that the anti-CD40Ab bound to all leukocytes, except T cells, and disseminated to multiple organs. CD4(+) and CD8(+) T cell responses were significantly enhanced when the anti-CD40Ab was coadministered with poly IC:LC compared with either adjuvant given alone and were almost exclusively compartmentalized to the lung. Notably, Ag-specific T cells in the bronchoalveolar lavage were sustained at ∼5-10%. These data indicate that systemic administration of anti-CD40Ab may be particularly advantageous for vaccines and/or therapies that require T cell immunity in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 06/2015; 195(3). DOI:10.4049/jimmunol.1500078 · 4.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority of vaccines and several treatments are administered by intramuscular injection. The aim is to engage and activate immune cells, although they are rare in normal skeletal muscle. The phenotype and function of resident as well as infiltrating immune cells in the muscle after injection are largely unknown. While methods for obtaining and characterizing murine muscle cell suspensions have been reported, protocols for nonhuman primates (NHPs) have not been well defined. NHPs comprise important in vivo models for studies of immune cell function due to their high degree of resemblance with humans. In this study, we developed and systematically compared methods to collect vaccine-injected muscle tissue to be processed into single cell suspensions for flow cytometric characterization of immune cells. We found that muscle tissue processed by mechanical disruption alone resulted in significantly lower immune cell yields compared to enzymatic digestion using Liberase. Dendritic cell subsets, monocytes, macrophages, neutrophils, B cells, T cells and NK cells were readily detected in the muscle by the classical human markers. The methods for obtaining skeletal muscle cell suspension established here offer opportunities to increase the understanding of immune responses in the muscle, and provides a basis for defining immediate post-injection vaccine responses in primates. Copyright © 2015. Published by Elsevier B.V.
    Journal of immunological methods 06/2015; DOI:10.1016/j.jim.2015.06.011 · 1.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because of significant viral diversity, vaccines that elicit durable and broad protection against influenza have been elusive. Recent research has focused on the potential of highly conserved regions of the viral hemagglutinin (HA) as targets for broadly neutralizing Ab responses. Abs that bind the highly conserved stem or stalk of HA can be elicited by vaccination in humans and animal models and neutralize diverse influenza strains. However, the frequency and phenotype of HA stem-specific B cells in vivo remain unclear. In this article, we characterize HA stem-specific B cell responses following H5N1 vaccination and describe the re-expansion of a pre-existing population of memory B cells specific for stem epitopes. This population uses primarily, but not exclusively, IGHV1-69-based Igs for HA recognition. However, within some subjects, allelic polymorphism at the ighv1-69 locus can limit IGHV1-69 immunodominance and may reduce circulating frequencies of stem-reactive B cells in vivo. The accurate definition of allelic selection, recombination requirements, and ontogeny of neutralizing Ab responses to influenza will aid rational influenza vaccine design. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 06/2015; 195(2). DOI:10.4049/jimmunol.1402835 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost. Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65) or phosphate buffered saline (PBS) (n=66) administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3) 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI) was the secondary objective. The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study. While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative. NCT01498718.
    PLoS ONE 05/2015; 10(5):e0125914. DOI:10.1371/journal.pone.0125914 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background A novel, swine-origin influenza A (H1N1) virus was detected worldwide in April 2009, and the World Health Organization (WHO) declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1) influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1) licensed monovalent inactivated vaccine (MIV). Methods 20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector) at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry. Results Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine. Conclusions H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.
    PLoS ONE 04/2015; 10(4):e0123969. DOI:10.1371/journal.pone.0123969 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing predictive animal models to assess how candidate vaccines and infection influence the ontogenies of Envelope (Env)-specific antibodies is critical for the development of an HIV vaccine. Here we use two nonhuman primate models to compare the roles of antigen persistence, diversity and innate immunity. We perform longitudinal analyses of HIV Env-specific B-cell receptor responses to SHIVAD8 infection and Env protein vaccination with eight different adjuvants. A subset of the SHIVAD8-infected animals with higher viral loads and greater Env diversity show increased neutralization associated with increasing somatic hypermutation (SHM) levels over time. The use of adjuvants results in increased ELISA titres but does not affect the mean SHM levels or CDR H3 lengths. Our study shows how the ontogeny of Env-specific B cells can be tracked, and provides insights into the requirements for developing neutralizing antibodies that should facilitate translation to human vaccine studies.
    Nature Communications 04/2015; 6:6565. DOI:10.1038/ncomms7565 · 11.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Achievement of a cure for HIV infection might need reactivation of latent virus and improvement of HIV-specific immunity. As an initial step, in this trial we assessed the effect of antiretroviral therapy intensification and immune modulation with a DNA prime and recombinant adenovirus 5 (rAd5) boost vaccine.
    The Lancet HIV 02/2015; 2(3). DOI:10.1016/S2352-3018(15)00026-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The West African outbreak of Ebola virus disease has caused more than 8500 deaths. A vaccine could contribute to outbreak control in the region. We assessed a monovalent formulation of a chimpanzee adenovirus 3 (ChAd3)-vectored vaccine encoding the surface glycoprotein of Zaire ebolavirus (EBOV), matched to the outbreak strain. Methods After expedited regulatory and ethics approvals, 60 healthy adult volunteers in Oxford, United Kingdom, received a single dose of the ChAd3 vaccine at one of three dose levels: 1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles (with 20 participants per group). Safety was assessed over the next 4 weeks. Antibodies were measured on enzyme-linked immunosorbent assay (ELISA) and T-cell responses on enzyme-linked immunospot (ELISpot) and flow-cytometry assays. Results No safety concerns were identified at any of the dose levels studied. Fever developed in 2 of the 59 participants who were evaluated. Prolonged activated partial-thromboplastin times and transient hyperbilirubinemia were observed in 4 and 8 participants, respectively. Geometric mean antibody responses on ELISA were highest (469 units; range, 58 to 4051; 68% response rate) at 4 weeks in the high-dose group, which had a 100% response rate for T cells on ELISpot, peaking at day 14 (median, 693 spot-forming cells per million peripheral-blood mononuclear cells). Flow cytometry revealed more CD4+ than CD8+ T-cell responses. At the vaccine doses tested, both antibody and T-cell responses were detected but at levels lower than those induced in macaques protected by the same vaccine. Conclusions The ChAd3 monovalent vaccine against EBOV was immunogenic at the doses tested. (Funded by the Wellcome Trust and others; number, NCT02240875 .).
    New England Journal of Medicine 01/2015; DOI:10.1056/NEJMoa1411627 · 55.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ebola virus and Marburg virus cause serious disease outbreaks with high case fatality rates. We aimed to assess the safety and immunogenicity of two investigational DNA vaccines, one (EBO vaccine) encoding Ebola virus Zaire and Sudan glycoproteins and one (MAR) encoding Marburg virus glycoprotein. RV 247 was a phase 1b, double-blinded, randomised, placebo-controlled clinical trial in Kampala, Uganda to examine the safety and immunogenicity of the EBO and MAR vaccines given individually and concomitantly. Healthy adult volunteers aged 18-50 years were randomly assigned (5:1) to receive three injections of vaccine or placebo at weeks 0, 4, and 8, with vaccine allocations divided equally between three active vaccine groups: EBO vaccine only, MAR vaccine only, and both vaccines. The primary study objective was to investigate the safety and tolerability of the vaccines, as assessed by local and systemic reactogenicity and adverse events. We also assessed immunogenicity on the basis of antibody responses (ELISA) and T-cell responses (ELISpot and intracellular cytokine staining assays) 4 weeks after the third injection. Participants and investigators were masked to group assignment. Analysis was based on the intention-to-treat principle. This trial is registered at, number NCT00997607. 108 participants were enrolled into the study between Nov 2, 2009, and April 15, 2010. All 108 participants received at least one study injection (including 100 who completed the injection schedule) and were included in safety and tolerability analyses; 107 for whom data were available were included in the immunogenicity analyses. Study injections were well tolerated, with no significant differences in local or systemic reactions between groups. The vaccines elicited antibody and T-cell responses specific to the glycoproteins received and we detected no differences between the separate and concomitant use of the two vaccines. 17 of 30 (57%, 95% CI 37-75) participants in the EBO vaccine group had an antibody response to the Ebola Zaire glycoprotein, as did 14 of 30 (47%, 28-66) in the group that received both vaccines. 15 of 30 (50%, 31-69) participants in the EBO vaccine group had an antibody response to the Ebola Sudan glycoprotein, as did 15 of 30 (50%, 31-69) in the group that received both vaccines. Nine of 29 (31%, 15-51) participants in the MAR vaccine groups had an antibody response to the Marburg glycoprotein, as did seven of 30 (23%, 10-42) in the group that received both vaccines. 19 of 30 (63%, 44-80) participants in the EBO vaccine group had a T-cell response to the Ebola Zaire glycoprotein, as did 10 of 30 (33%, 17-53) in the group that received both vaccines. 13 of 30 (43%, 25-63) participants in the EBO vaccine group had a T-cell response to the Ebola Sudan glycoprotein, as did 10 of 30 (33%, 17-53) in the group that received both vaccines. 15 of 29 (52%, 33-71) participants in the MAR vaccine group had a T-cell response to the Marburg glycoprotein, as did 13 of 30 (43%, 25-63) in the group that received both vaccines. This study is the first Ebola or Marburg vaccine trial done in Africa, and the results show that, given separately or together, both vaccines were well tolerated and elicited antigen-specific humoral and cellular immune responses. These findings have contributed to the accelerated development of more potent Ebola virus vaccines that encode the same wild-type glycoprotein antigens as the EBO vaccine, which are being assessed during the 2014 Ebola virus disease outbreak in west Africa. US Department of Defense Infectious Disease Clinical Research Program and US National Institutes of Health Intramural Research Program. Copyright © 2014 Elsevier Ltd. All rights reserved.
    The Lancet 12/2014; 385(9977). DOI:10.1016/S0140-6736(14)62385-0 · 45.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Chikungunya virus—a mosquito-borne alphavirus—is endemic in Africa and south and southeast Asia and has recently emerged in the Caribbean. No drugs or vaccines are available for treatment or prevention. We aimed to assess the safety, tolerability, and immunogenicity of a new candidate vaccine. Methods VRC 311 was a phase 1, dose-escalation, open-label clinical trial of a virus-like particle (VLP) chikungunya virus vaccine, VRC-CHKVLP059-00-VP, in healthy adults aged 18–50 years who were enrolled at the National Institutes of Health Clinical Center (Bethesda, MD, USA). Participants were assigned to sequential dose level groups to receive vaccinations at 10 μg, 20 μg, or 40 μg on weeks 0, 4, and 20, with follow-up for 44 weeks after enrolment. The primary endpoints were safety and tolerability of the vaccine. Secondary endpoints were chikungunya virus-specific immune responses assessed by ELISA and neutralising antibody assays. This trial is registered with, NCT01489358. Findings 25 participants were enrolled from Dec 12, 2011, to March 22, 2012, into the three dosage groups: 10 μg (n=5), 20 μg (n=10), and 40 μg (n=10). The protocol was completed by all five participants at the 10 μg dose, all ten participants at the 20 μg dose, and eight of ten participants at the 40 μg dose; non-completions were for personal circumstances unrelated to adverse events. 73 vaccinations were administered. All injections were well tolerated, with no serious adverse events reported. Neutralising antibodies were detected in all dose groups after the second vaccination (geometric mean titres of the half maximum inhibitory concentration: 2688 in the 10 μg group, 1775 in the 20 μg group, and 7246 in the 40 μg group), and a significant boost occurred after the third vaccination in all dose groups (10 μg group p=0·0197, 20 μg group p<0·0001, and 40 μg group p<0·0001). 4 weeks after the third vaccination, the geometric mean titres of the half maximum inhibitory concentration were 8745 for the 10 μg group, 4525 for the 20 μg group, and 5390 for the 40 μg group. Interpretation The chikungunya VLP vaccine was immunogenic, safe, and well tolerated. This study represents an important step in vaccine development to combat this rapidly emerging pathogen. Further studies should be done in a larger number of participants and in more diverse populations. Funding Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, and National Institutes of Health.
    The Lancet 12/2014; 384(9959). DOI:10.1016/S0140-6736(14)61185-5 · 45.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The unprecedented 2014 epidemic of Ebola virus disease (EVD) has prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. Methods We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10(10) particle units or 2×10(11) particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 4 weeks after vaccination. Results In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10(11) particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10(11) particle-unit dose than in the group that received the 2×10(10) particle-unit dose (geometric mean titer against the Zaire antigen, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2x10(11) particle-unit dose than among those who received the 2×10(10) particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07). Conclusions Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×10(11) particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates. Clinical trials assessing cAd3-EBO are ongoing. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 number, NCT02231866 .).
    New England Journal of Medicine 11/2014; DOI:10.1056/NEJMoa1410863 · 55.87 Impact Factor

Publication Stats

35k Citations
3,080.90 Total Impact Points


  • 2003-2015
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Immunoregulation
      베서스다, Maryland, United States
  • 2001-2015
    • National Institutes of Health
      • • Laboratory of Immunology
      • • Section on Cellular Neurobiology
      베서스다, Maryland, United States
  • 2002-2014
    • National Institute of Allergy and Infectious Disease
      Baltimore, Maryland, United States
  • 2012
    • Vaccine & Gene Therapy Institute of Florida
      Port St. Lucie, Florida, United States
    • Hospital Universitario Virgen del Rocío
      • Infectious Diseases Service
      Hispalis, Andalusia, Spain
  • 2008-2012
    • University of Oxford
      • • Weatherall Institute of Molecular Medicine
      • • MRC Human Immunology Unit
      Oxford, ENG, United Kingdom
  • 1996-2012
    • The Rockefeller University
      • • Laboratory of Cellular Physiology and Immunology
      • • Aaron Diamond AIDS Research Center (ADARC)
      New York City, New York, United States
  • 2010
    • Imperial College London
      Londinium, England, United Kingdom
  • 2009
    • National Institute for Communicable Diseases
      Johannesburg, Gauteng, South Africa
  • 2006-2009
    • Fred Hutchinson Cancer Research Center
      • Statistical Center for HIV/AIDS Research and Prevention
      Seattle, Washington, United States
    • University of Alabama at Birmingham
      Birmingham, Alabama, United States
  • 2007
    • National Heart, Lung, and Blood Institute
      • Hematology Branch
      Bethesda, MD, United States
  • 2005-2006
    • Massachusetts General Hospital
      • Division of Infectious Diseases
      Boston, Massachusetts, United States
  • 2004
    • University Hospital of Lausanne
      Lausanne, Vaud, Switzerland
  • 2003-2004
    • National Eye Institute
      베서스다, Maryland, United States
  • 2000-2003
    • University of Texas at Dallas
      Richardson, Texas, United States
  • 1998-2001
    • University of Texas Southwestern Medical Center
      • • Division of Infectious Diseases
      • • Medical School
      Dallas, Texas, United States
    • Academisch Medisch Centrum Universiteit van Amsterdam
      • Department of Human Retrovirology
      Amsterdamo, North Holland, Netherlands
  • 1993-2001
    • CUNY Graduate Center
      New York, New York, United States
    • Houston Zoo
      Houston, Texas, United States
  • 1999
    • University of Illinois at Chicago
      Chicago, Illinois, United States
  • 1996-1998
    • Progenics Pharmaceuticals, Inc.
      Tarrytown, New York, United States
  • 1997
    • California Department of Public Health
      Richmond, California, United States
  • 1995
    • Johns Hopkins University
      • Department of Medicine
      Baltimore, MD, United States
  • 1989-1992
    • University of Massachusetts Medical School
      • • Program in Molecular Medicine
      • • Department of Pediatrics
      Worcester, Massachusetts, United States