Peter J Walla

Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany

Are you Peter J Walla?

Claim your profile

Publications (31)165.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase NSF that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane.
    Journal of Biological Chemistry 04/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When excited with rotating linear polarized light, differently oriented fluorescent dyes emit periodic signals peaking at different times. We show that measurement of the average orientation of fluorescent dyes attached to rigid sample structures mapped to regularly defined (50 nm)(2) image nanoareas can provide subdiffraction resolution (super resolution by polarization demodulation, SPoD). Because the polarization angle range for effective excitation of an oriented molecule is rather broad and unspecific, we narrowed this range by simultaneous irradiation with a second, de-excitation, beam possessing a polarization perpendicular to the excitation beam (excitation polarization angle narrowing, ExPAN). This shortened the periodic emission flashes, allowing better discrimination between molecules or nanoareas. Our method requires neither the generation of nanometric interference structures nor the use of switchable or blinking fluorescent probes. We applied the method to standard wide-field microscopy with camera detection and to two-photon scanning microscopy, imaging the fine structural details of neuronal spines.
    Nature Methods 04/2014; · 23.57 Impact Factor
  • Christoph-Peter Holleboom, Peter J Walla
    [Show abstract] [Hide abstract]
    ABSTRACT: Many aspects in the regulation of photosynthetic light-harvesting of plants are still quite poorly understood. For example, it is still a matter of debate which physical mechanism(s) results in the regulation and dissipation of excess energy in high light. Many researchers agree that electronic interactions between chlorophylls (Chl) and certain states of carotenoids are involved in these mechanisms. However, in particular, the role of the first excited state of carotenoids (Car S1) is not easily revealed, because of its optical forbidden character. The use of two-photon excitation is an elegant approach to address directly this state and to investigate the energy transfer in the direction Car S1 → Chl. Meanwhile, it has been applied to a large variety of systems starting from simple carotenoid-tetrapyrrole model compounds up to entire plants. Here, we present a systematic summary of the observations obtained by two-photon excitation about Car S1 → Chl energy transfer in systems with increasing complexity and the correlation to fluorescence quenching. We compare these observations directly with the energy transfer in the opposite direction, Chl → Car S1, for the same systems as obtained in pump-probe studies. We discuss what surprising aspects of this comparison led us to the suggestion that quenching excitonic Car-Chl interactions could contribute to the regulation of light harvesting, and how this suggestion can be connected to other models proposed.
    Photosynthesis Research 04/2013; · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we have tested the individual contributions of PSII complexes and Zea to chlorophyll (Chl) fluorescence quenching in a membrane environment. We demonstrate that PsbS is stable in the absence of pigments in vitro. Significant Chl fluorescence quenching of reconstituted LHC-II was observed in the presence of PsbS and Zea, although neither Zea nor PsbS alone was sufficient to induce the same quenching. Coreconstitution with PsbS resulted in the formation of LHC-II/PsbS heterodimers, indicating their direct interaction in the lipid bilayer. Two-photon excitation measurements on liposomes containing LHC-II, PsbS, and Zea showed an increase of electronic interactions between carotenoid S1 and Chl states, $${\Phi }_{\hbox{ Coupling }}^{\mathit{C}\mathit{a}\mathit{r}{\mathit{S}}_{\mathbf{1}}-\mathit{C}\mathit{h}\mathit{l}}$$, that correlated directly with Chl fluorescence quenching. These findings are in agreement with a carotenoid-dependent Chl fluorescence quenching by direct interactions of LHCs of PSII with PsbS monomers.
    Proceedings of the National Academy of Sciences 03/2013; · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of light-harvesting in photosynthesis under conditions of varying solar light irradiation is essential for the survival and fitness of plants and algae. It has been proposed that rearrangements of protein distribution in the stacked grana region of thylakoid membranes connected to changes in the electronic pigment-interaction play a key role for this regulation. In particular, carotenoid-chlorophyll interactions seem to be crucial for the down-regulation of photosynthetic light-harvesting. So far, it has been difficult to determine the influence of the dense protein packing found in native photosynthetic membrane on these interactions. We investigated the changes of the electronic couplings between carotenoids and chlorophylls and the quenching in grana thylakoids of varying protein packing density by two-photon spectroscopy, conventional chlorophyll fluorometry, low-temperature fluorescence spectroscopy, and electron micrographs of freeze-fracture membranes. We observed an increasing carotenoid-chlorophyll coupling and fluorescence quenching with increasing packing density. Simultaneously, the antennas size and excitonic connectivity of Photosystem II increased with increasing quenching and carotenoid-chlorophyll coupling whereas isolated, decoupled LHCII trimers decreased. Two distinct quenching data regimes could be identified that show up at different protein packing densities. In the regime corresponding to higher protein packing densities, quenching is strongly correlated to carotenoid-chlorophyll interactions whereas in the second regime, a weak correlation is apparent with low protein packing densities. Native membranes are in the strong-coupling data regime. Consequently, PSII and LHCII in grana membranes of plants are already quenched by protein crowding. We concluded that this ensures efficient electronic connection of all pigment-protein complexes for intermolecular energy transfer to the reaction centers and allows simultaneously sensitive regulation of light harvesting by only small changes in the protein packaging.
    The Journal of Physical Chemistry B 03/2013; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Binding of heterochromatin protein 1 (HP1) to the histone H3 lysine 9 trimethylation (H3K9me3) mark is a hallmark of establishment and maintenance of heterochromatin. Although genetic and cell biological aspects have been elucidated, the molecular details of HP1 binding to H3K9me3 nucleosomes are unknown. Using a combination of NMR spectroscopy and biophysical measurements on fully defined recombinant experimental systems, we demonstrate that H3K9me3 works as an on/off switch regulating distinct binding modes of hHP1β to the nucleosome. The methyl-mark determines a highly flexible and very dynamic interaction of the chromodomain of hHP1β with the H3-tail. There are no other constraints of interaction or additional multimerization interfaces. In contrast, in the absence of methylation, the hinge region and the N-terminal tail form weak nucleosome contacts mainly with DNA. In agreement with the high flexibility within the hHP1β-H3K9me3 nucleosome complex, the chromoshadow domain does not provide a direct binding interface. Our results report the first detailed structural analysis of a dynamic protein-nucleosome complex directed by a histone modification and provide a conceptual framework for understanding similar interactions in the context of chromatin.
    Journal of Biological Chemistry 07/2012; 287(40):33756-65. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.
    Science 06/2012; 336(6088):1581-1584. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In neurotransmission synaptotagmin-1 tethers synaptic vesicles to the presynaptic plasma membrane by binding to acidic membrane lipids and SNAREs and promotes rapid SNARE-mediated fusion upon Ca(2+) triggering. However, recent studies suggested that upon membrane contact synaptotagmin may not only bind in trans to the target membrane but also in cis to its own membrane. Using a sensitive membrane tethering assay we have now dissected the structural requirements and concentration ranges for Ca(2+)-dependent and -independent cis-binding and trans-tethering in the presence and absence of acidic phospholipids and SNAREs. Using variants of membrane-anchored synaptotagmin in which the Ca(2+)-binding sites in the C2 domains and a basic cluster involved in membrane binding were disrupted we show that Ca(2+)-dependent cis-binding prevents trans-interactions if the cis-membrane contains 12-20% anionic phospholipids. Similarly, no trans-interactions were observable using soluble C2AB-domain fragments at comparable concentrations. At saturating concentrations, however, tethering was observed with soluble C2AB domains, probably due to crowding on the vesicle surface and competition for binding sites. We conclude that trans-interactions of synaptotagmin considered to be essential for its function are controlled by a delicate balance between cis- and trans-binding, which may play an important modulatory role in synaptic transmission.
    Proceedings of the National Academy of Sciences 06/2012; 109(27):11037-42. · 9.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In two recent studies, energy transfer was reported in certain phthalocyanine-carotenoid dyads between the optically forbidden first excited state of carotenoids (Car S(1)) and phthalocyanines (Pcs) in the direction Pc → Car S(1) (Kloz et al., J Am Chem Soc 133:7007-7015, 2011) as well as in the direction Car S(1) → Pc (Liao et al., J Phys Chem A 115:4082-4091, 2011). In this article, we show that the extent of this energy transfer in both directions is closely correlated in these dyads. This correlation and the additional observation that Car S(1) is instantaneously populated after Pc excitation provides evidence that in these compounds excitonic interactions can occur. Besides pure energy transfer and electron transfer, this is the third type of tetrapyrrole-carotenoid interaction that has been shown to occur in these model compounds and that has previously been proposed as a photosynthetic regulation mechanism. We discuss the implications of these models for photosynthetic regulation. The findings are also discussed in the context of a model in which both electronic states are disordered and in which the strength of the electronic coupling determines whether energy transfer, excitonic coupling, or electron transfer occurs.
    Photosynthesis Research 09/2011; 111(1-2):237-43. · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).
    Journal of Biological Chemistry 06/2011; 286(31):27247-54. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electronic interactions between the first excited states (S(1)) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S(1)-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S(1) state allowed sensitive monitoring of the flow of energy between Car S(1) and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S(1) and that only a small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S(1) → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S(1) energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S(1) state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S(1)-Pc Q(y) interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.
    The Journal of Physical Chemistry A 03/2011; 115(16):4082-91. · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, excitonic carotenoid-chlorophyll interactions have been proposed as a simple but effective model for the down-regulation of photosynthesis in plants. The model was proposed on the basis of quenching-correlated electronic carotenoid-chlorophyll interactions (Car S(1) → Chl) determined by Car S(1) two-photon excitation and red-shifted absorption bands. However, if excitonic interactions are indeed responsible for this effect, a simultaneous correlation of quenching with increased energy transfer in the opposite direction, Chl Q(y) → Car S(1), should be observed. Here we present a systematic study on the correlation of Car S(1) → Chl and Chl → Car S(1) energy transfer with the occurrence of red-shifted bands and quenching in isolated LHCII. We found a direct correlation between all four phenomena, supporting our conclusion that excitonic Car S(1)-Chl interactions provide low-lying states serving as energy traps and dissipative valves for excess excitation energy.
    The Journal of Physical Chemistry B 11/2010; 114(47):15650-5. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid–chlorophyll interactions, ϕCouplingCar S1-Chl, as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between ϕCouplingCar S1-Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II [1]. In order to elucidate which carotenoid–chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.
    Chemical Physics 07/2010; · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, it has been shown that 2-photon fluorescence correlation spectroscopy of single glycosylated 20-nm fluorescent spheres allows measurement of the relative carbohydrate binding affinities of unlabeled proteins and that these modified spheres can mimic the glycocalix of cell or virus surfaces. An especially useful extension would be the analysis of mixtures of nanospheres that each contain different fluorescent labels and are thus differentially "encoded." If the surfaces of these encoded nanospheres are modified with various receptors, many different biomolecule-surface interactions and concurrent reactions can be measured quickly and simultaneously in a single-reaction vessel. An essential prerequisite for this general assay principle is the ability to identify with an accuracy of nearly 100% any encoded nanosphere present in a mixture on a single-particle level. Here the authors present a method that indeed allows certain identification of differently encoded nanospheres during single transits through the focal volume of a microscope objective (ø approximately 200-500 nm) in aqueous solution. This opens the way for using the encoded nanospheres in 1-well measurements of a large variety of biomolecular receptor-ligand interactions, inhibition and concurrent reactions, and thus either for testing the behavior of ligands in a mimicked complex biomolecular environment or for a fast simultaneous measurement of a multitude of receptor-ligand interactions.
    Journal of Biomolecular Screening 02/2010; 15(2):218-23. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal exocytosis is mediated by the SNARE proteins synaptobrevin 2/VAMP, syntaxin 1A, and SNAP-25A. While it is well-established that these proteins mediate membrane fusion after reconstitution in artificial membranes, it has so far been difficult to monitor intermediate stages of the reaction. Using a confocal two-photon setup, we applied fluorescence cross-correlation spectroscopy (FCCS) and fluorescence lifetime analysis to discriminate between docking and fusion of liposomes. We show that liposome populations that are either non-interacting, or are undergoing docking and fusion, as well as multiple interactions can be quantitatively discriminated without the need for immobilizing the lipid bilayers. When liposomes containing a stabilized syntaxin 1A/SNAP-25A complex were mixed with liposomes containing synaptobrevin 2, we observed that rapid docking precedes fusion. Accordingly, docked intermediates accumulated in the initial phase of the reaction. Furthermore, rapid formation of multiple docked states was observed with on average four liposomes interacting with each other. When liposomes of different sizes were compared, only the rate of lipid mixing depended on the liposome size but not the rate of docking. Our results show that under appropriate conditions a docked state, mediated by trans-SNARE interactions, can be isolated that constitutes an intermediate in the fusion pathway.
    Proceedings of the National Academy of Sciences 11/2009; 106(44):18575-80. · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective 2-photon excitation (TPE) of carotenoid dark states, Car S(1), shows that in the major light-harvesting complex of photosystem II (LHCII), the extent of electronic interactions between carotenoid dark states (Car S(1)) and chlorophyll (Chl) states, phi(Coupling)(Car S(1)-Chl), correlates linearly with chlorophyll fluorescence quenching under different experimental conditions. Simultaneously, a linear correlation between both Chl fluorescence quenching and phi(Coupling)(Car S(1)-Chl) with the intensity of red-shifted bands in the Chl Q(y) and carotenoid absorption was also observed. These results suggest quenching excitonic Car S(1)-Chl states as origin for the observed effects. Furthermore, real time measurements of the light-dependent down- and up-regulation of the photosynthetic activity and phi(Coupling)(Car S(1)-Chl) in wild-type and mutant (npq1, npq2, npq4, lut2 and WT+PsbS) Arabidopsis thaliana plants reveal that also in vivo the quenching parameter NPQ correlates always linearly with the extent of electronic Car S(1)-Chl interactions in any adaptation status. Our in vivo measurements with Arabidopsis variants show that during high light illumination, phi(Coupling)(Car S(1)-Chl) depends on the presence of PsbS and zeaxanthin (Zea) in an almost identical way as NPQ. In summary, these results provide clear evidence for a very close link between electronic Car S(1)-Chl interactions and the regulation of photosynthesis. These findings support a photophysical mechanism in which short-living, low excitonic carotenoid-chlorophyll states serve as traps and dissipation valves for excess excitation energy.
    Proceedings of the National Academy of Sciences 08/2009; 106(30):12311-6. · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two-color two-photon (2c2p) excitation fluorescence is used to monitor the enzymatic cleavage of bovine serum albumin (BSA) by subtilisin. Fluorescence is generated by irradiation with spatially and temporally overlapping femtosecond laser beams resulting in simultaneous absorption of an 800 and a 400 nm photon. Thereby, excitation of the fluorescent amino acid tryptophan present in BSA corresponds to an effective one-photon wavelength of 266 nm. The progress of protein cleavage is monitored by time-resolved fluorescence analysis. The fluorescence lifetime of tryptophan decreases during the reaction. This demonstrates a novel label-free multiphoton observation technique for conformational changes of proteins containing tryptophan. Due to the strong 2c2p fluorescence signal it is suitable for fast evaluation and monitoring of protein reactions. The course of the reaction is monitored simultaneously by gel electrophoresis. In contrast to conventional one-photon techniques, 2c2p excitation enables label-free protein fluorescence studies without irradiating the sample with UV light. Due to the dependence of the excitation on the power of both laser beams, excitation is limited to a relatively small focal volume. This results in dramatically reduced overall photodamage compared to direct UV irradiation. This method can be easily extended to microscopy imaging techniques.
    ChemPhysChem 02/2009; 10(9-10):1607-13. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning electron microscope images show that it is easy to generate nanopores on polycarbonate membranes with well-defined pore diameters by ion-track perforation and subsequent magnetron sputtering with metal. The size reduction of the nanopores during sputtering with gold is a linear function of time. Images of different angles and from the bottom side of the membrane show that the channels are the smallest very close to the surface of the metal layer, have a conelike shape, and reach about half as much into the polymer membranes as the metal-layer thickness. This topographical pore shape is ideal for use as optically coherent near-field sources in deep-nulling microscopy. We present the first results of significantly improved nulling stabilization in the presence (<2 nm optical pathway difference) and the absence (<0.6 nm optical pathway difference) of the nanoapertures in the focal region of a deep-nulling microscope.
    ChemPhysChem 02/2008; 9(2):327-31. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Car S1→Chl energy transfer efficiency, ΦTransfer, in xanthophyll-cycle mutants of living plants and LHC II was investigated by selective Car S1 two-photon excitation. Before high-light illumination ΦTransfer, of the violaxanthin deficient mutant npq2 is ∼30% smaller than the corresponding value for wild type plants. For the zeaxanthin deficient mutant, npq1, ΦTransfer is ∼30% larger. Wild type Arabidopsis thaliana is the only variant which is capable of a light-dependent decrease of up to 40% and complete recovery to the original ΦTransfer values. In contrast, ΦTransfer remains constant during dark adaptation in both mutants. Surprisingly, changes in ΦTransfer of LHC II preparations were less than 5% only, when substituting violaxanthin by zeaxanthin.
    Chemical Physics Letters 01/2008; 450(4):379-385. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capability of using ultrafast detection technologies for a fast analysis of biomolecular reactions has been explored. As an example, the ultrafast response of tetramethylrhodamine (TMR)-labeled bovine serum albumin (BSA) as a function of different extents in proteolytic cleavage was investigated. The authors compared 4 samples of masses differing over several orders of magnitude: untreated, TMR-labeled BSA (66 kDa), TMR-labeled BSA treated with elastase (6-33 kDa) and with subtilisin (< 3 kDa), and the pure label TMR (0.4 kDa). A direct comparison with gel electrophoresis revealed that various ultrafast parameters give robust information about the progress of the proteolytic cleavage. The authors found the ratio of the transient absorption signal observed at 0 psec and 50 psec after excitation (lambda(Pump) = 540 nm, lambda(Probe) = 570 nm) to be the most precise parameter for determining the cleavage. This parameter allowed determining the mass accurately within 1 sec (Z' factor of 0.83) or 600 msec (Z' factor of 0.64), measuring time per sample. This indicates that many of the known ultrafast detection technologies might be used for monitoring biochemical reactions, probably even without any labeling procedure. The authors also discuss briefly which ultrafast processes contribute to the signals and how they are affected by changes in the biomolecular environment.
    Journal of Biomolecular Screening 04/2007; 12(3):341-50. · 2.21 Impact Factor

Publication Stats

294 Citations
165.24 Total Impact Points

Institutions

  • 2006–2013
    • Technische Universität Braunschweig
      • Institut für Physikalische und Theoretische Chemie
      Braunschweig, Lower Saxony, Germany
  • 2005–2012
    • Max Planck Institute for Biophysical Chemistry
      • • Department of Neurobiology
      • • Group of Spectroscopy and Photochemical Kinetics
      Göttingen, Lower Saxony, Germany