T E Eling

National Institute of Environmental Health Sciences, Durham, North Carolina, United States

Are you T E Eling?

Claim your profile

Publications (284)1247.07 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) or GDF15 is a divergent member of the transforming growth factor beta (TGF-β) superfamily and mice expressing hNAG-1/hGDF15 have been shown to be resistant to HFD-induced obesity and inflammation. This study investigated if hNAG-1 increases lifespan in mice and its potential mechanisms. Here we report that female hNAG-1 mice had significantly increased both mean and median life spans in two transgenic lines, with a larger difference in life spans in mice on a HFD than on low fat diet. hNAG-1 mice displayed significantly reduced body and adipose tissue weight, lowered serum IGF-1, insulin and glucose levels, improved insulin sensitivity, and increased oxygen utilization, oxidative metabolism and energy expenditure. Gene expression analysis revealed significant differences in conserved gene pathways that are important regulators of longevity, including IGF-1, p70S6K, and PI3K/Akt signaling cascades. Phosphorylation of major components of IGF-1/mTOR signaling pathway was significantly lower in hNAG-1mice. Collectively, hNAG-1 is an important regulator of mammalian longevity and may act as a survival factor. Our study suggests that hNAG-1 has potential therapeutic uses in obesity-related diseases where life span is frequently shorter.
    Aging 08/2014; 6(8):690-704. · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While obesity represents one of several risk factors for colorectal cancer in humans, the mechanistic underpinnings of this association remain unresolved. Environmental stimuli, including diet, can alter the epigenetic landscape of DNA cis-regulatory elements affecting gene expression and phenotype. Here, we explored the impact of diet and obesity on gene expression and the enhancer landscape in murine colonic epithelium. Obesity led to the accumulation of histone modifications associated with active enhancers at genomic loci downstream of signaling pathways integral to the initiation and progression of colon cancer. Meanwhile, colon-specific enhancers lost the same histone mark, poising cells for loss of differentiation. These alterations reflect a transcriptional program with many features shared with the program driving colon cancer progression. The interrogation of enhancer alterations by diet in colonic epithelium provides insights into the biology underlying high-fat diet and obesity as risk factors for colon cancer.
    Cell metabolism 04/2014; 19(4):702-11. · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective:Obesity is a major health problem associated with high morbidity and mortality. NSAID activated gene, (NAG-1) is a TGF-β superfamily member reported to alter adipose tissue levels in mice. We investigated whether hNAG-1 acts as a regulator of adiposity and energy metabolism.Design/Subjects:hNAG-1 mice, ubiquitously expressing hNAG-1, were placed on a control or high fat diet (HFD) for 12 weeks. hNAG-1 expressing B16/F10 melanoma cells were used in a xenograft model to deliver hNAG-1 to obese C57BL/6 mice.Results:As compared to wild-type littermates, transgenic hNAG-1 mice have less white fat and brown fat despite equivalent food intake, improved glucose tolerance, lower insulin levels and are resistant to dietary- and genetic-induced obesity. hNAG-1 mice are more metabolically active with higher energy expenditure. Obese C57BL/6 mice treated with hNAG-1 expressing xenografts show decreases in adipose tissue and serum insulin levels. hNAG-1 mice and obese mice treated with hNAG-1 expressing xenografts show increased thermogenic gene expression (UCP1, PGC1α, ECH1, Cox8b, Dio2, Cyc1, PGC1β, PPARα, Elvol3) in brown adipose tissue (BAT) and increased expression of lipolytic genes (Adrb3, ATGL, HSL) in both white adipose tissue (WAT) and BAT, consistent with higher energy metabolismConclusion:hNAG-1 modulates metabolic activity by increasing the expression of key thermogenic and lipolytic genes in BAT and WAT. hNAG-1 appears to be a novel therapeutic target in preventing and treating obesity and insulin resistance.International Journal of Obesity accepted article preview online, 17 February 2014; doi:10.1038/ijo.2014.27.
    International journal of obesity (2005) 02/2014; · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-steroidal anti-inflammatory drugs (NSAIDs) are used extensively for analgesic and antipyretic treatments. In addition, NSAIDs reduce the risk and mortality to several cancers. Their mechanisms in anti-tumorigenesis are not fully understood, but both cyclooxygenase (COX)-dependent and -independent pathways play a role. We and others have been interested in elucidating molecular targets of NSAID-induced apoptosis. In this review, we summarize updated literature regarding cellular and molecular targets modulated by NSAIDs. Among those NSAIDs, sulindac sulfide and tolfenamic acid are emphasized in this review because these two drugs have been well investigated for their anti-tumorigenic activity in many different types of cancer.
    Cancer letters 01/2014; · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NLRP3 inflammasome plays an important regulatory role in obesity-induced insulin resistance. NSAID activated gene-1 (NAG-1) is a divergent member of the TGF-β superfamily. NAG-1 Tg mice are resistant to dietary- and genetic-induced obesity and have improved insulin sensitivity. Our objective was to examine whether NLRP3 inflammasome activity is associated with this observed phenotype in NAG-1 Tg mice. Key components of the NLRP3 inflammasome were examined in NAG-1 Tg mice on both regular and high fat diet (HFD) conditions. The expression of caspase-1 and ASC, key components of the NLRP3 inflammasome, is significantly reduced at mRNA and protein levels in white adipose tissue (WAT) of NAG-1 Tg mice. HFD increases the expression of caspase-1 and ASC in WT mice, but their expression is reduced in NAG-1 Tg mice. Furthermore, there is reduced IL-18, IL-1β, and TNF-α expression in the WAT of NAG-1 Tg mice. NAG-1 Tg mice have significantly lower serum leptin and insulin levels and reduced expression of macrophage infiltration markers (F4/80, CD11b, and CD11c) in WAT. Our study suggests the lower NLRP3 inflammasome activity may play a role in the resistance of NAG-1 Tg mice to diet-induced obesity and improved insulin sensitivity.
    Obesity 10/2013; · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAG-1/GDF15 is a TGF- β superfamily member with poorly characterized biological activity proposed to inhibit inflammatory cytokine production. Transgenic mice expressing human NAG-1/GDF15 (NAG-1 (Tg/Lox) ) are leaner with lower body weight and are resistant to chemically or genetically induced intestinal tumors. Because of the link between obesity, inflammation, and cancer, we examined whether these mice exhibit a reduced response to inflammatory stimuli. The NAG-1 (Tg/Lox) mice had a reduced inflammatory response to LPS based on the serum levels of cytokines KC, IL-6, MCP-1, and TNF α . In contrast to literature reports and our in vivo results, NAG-1 did not inhibit LPS-induced cytokine expression in vitro in RAW264.7 cells, mouse peritoneal macrophages, or mouse liver Kupffer cells, suggesting that NAG-1/GDF15 does not directly inhibit LPS-induced inflammatory cytokine production. However, NAG-1 (Tg/Lox) mice have less white adipose tissue, the major source of inflammatory adipokines including leptin. Basal and LPS-treated serum leptin and mRNA levels in the adipose tissue of NAG-1 (Tg/Lox) mice were lower than those in WT mice. We propose that the reduced white adipose tissue and reduced leptin expression may be responsible, in part, for the reduced inflammatory response to LPS and the decrease in intestinal tumors observed in NAG-1 (Tg/Lox) mice.
    Mediators of Inflammation 01/2013; 2013:641851. · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The expression of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is regulated by the p53 and Egr-1 tumor suppressor pathways. Many anti-cancer drugs and chemicals induce NAG-1 expression, but the mechanisms are not fully understood. Transgenic mice expressing human NAG-1 are resistant to intestinal and prostate cancer, suggesting that NAG-1 is a tumor suppressor. Proteasome inhibitors exhibit anti-glioblastoma activities in preclinical studies. Here, we show that the proteasome inhibitors MG132 and bortezomib induced NAG-1 expression and secretion in glioblastoma cells. MG132 increased NAG-1 expression through transcriptional and post-transcriptional mechanisms. At the transcriptional level, the induction of NAG-1 required the -133 to +41 bp region of the promoter. At post-transcriptional levels, MG132 stabilized NAG-1 mRNA by increasing the half-life from 1.5 h to > 8 h. Because of the dramatic increase in mRNA stability, this is likely the major contributor to MG132-mediated NAG-1 induction. Further probing into the mechanism revealed that MG132 increased phosphorylation of the p38 MAPK pathway. Consequently, inhibiting p38 phosphorylation blocked activation of the NAG-1 promoter and decreased mRNA stability, indicating that p38 MAPK activation mediates both MG132-dependent promoter activation and mRNA stabilization of NAG-1. We propose that the induction of NAG-1 by p38 MAPK is a potential contributor to the anti-glioblastoma activity of proteasome inhibitors.
    Biochemical and Biophysical Research Communications 12/2012; · 2.28 Impact Factor
  • Xingya Wang, Seung Joon Baek, Thomas E Eling
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1, NAG-1, is a divergent member of the transforming growth factor-beta (TGF-β) superfamily that plays a complex but poorly understood role in several human diseases including cancer. NAG-1 expression is substantially increased during cancer development and progression especially in gastrointestinal, prostate, pancreatic, colorectal, breast, melanoma, and glioblastoma brain tumors. Aberrant increases in the serum levels of secreted NAG-1 correlate with poor prognosis and patient survival rates in some cancers. In contrast, the expression of NAG-1 is up-regulated by several tumor suppressor pathways including p53, GSK-3β, and EGR-1. NAG-1 expression is also induced by many drugs and dietary compounds which are documented to prevent the development and progression of cancer in mouse models. Studies with transgenic mice expressing human NAG-1 demonstrated that the expression of NAG-1 inhibits the development of intestinal tumors and prostate tumors in animal models. Laboratory and clinical evidence suggest that NAG-1, like other TGF-β family members, may have different or pleiotropic functions in the early and late stages of carcinogenesis. Upon understanding the molecular mechanism and function of NAG-1 during carcinogenesis, NAG-1 may serve as a potential biomarker for the diagnosis and prognosis of cancer and a therapeutic target for the inhibition and treatment of cancer development and progression.
    Biochemical pharmacology 12/2012; · 4.25 Impact Factor
  • Xingya Wang, Seung Joon Baek, Thomas Eling
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is an important contributor to the development and progression of human cancers. Inflammatory lipid metabolites, prostaglandins, formed from arachidonic acid by prostaglandin H synthases commonly called cyclooxygenases (COXs) bind to specific receptors that activate signaling pathways driving the development and progression of tumors. Inhibitors of prostaglandin formation, COX inhibitors, or nonsteroidal anti-inflammatory drugs (NSAIDs) are well documented as agents that inhibit tumor growth and with long-term use prevent tumor development. NSAIDs also alter gene expression independent of COX inhibition and these changes in gene expression also appear to contribute to the anti-tumorigenic activity of these drugs. Many NSAIDs, as illustrated by sulindac sulfide, alter gene expressions by altering the expression or phosphorylation status of the transcription factors specificity protein 1 and early growth response-1 with the balance between these two events resulting in increases or decreases in specific target genes. In this review, we have summarized and discussed the various genes altered by this mechanism after NSAID treatment and how these changes in expression relate to the anti-tumorigenic activity. A major focus of the review is on NSAID-activated gene (NAG-1) or growth differentiation factor 15. This unique member of the TGF-β superfamily is highly induced by NSAIDs and numerous drugs and chemicals with anti-tumorigenic activities. Investigations with a transgenic mouse expressing the human NAG-1 suggest it acts to suppress tumor development in several mouse models of cancer. The biochemistry and biology of NAG-1 were discussed as potential contributor to cancer prevention by COX inhibitors.
    CANCER AND METASTASIS REVIEW 12/2011; 30(3-4):641-57. · 9.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-steroidal anti-inflammatory drug-activated gene (NAG-1), a divergent member of the transforming growth factor-beta superfamily, has been implicated in many cellular processes, including inflammation, early bone formation, apoptosis, and tumorigenesis. Recent clinical studies suggests that a C to G single nucleotide polymorphism at position 6 (histidine to aspartic acid substitution, or H6D) of the NAG-1 protein is associated with lower human prostate cancer incidence. The objective of the current study is to investigate the activity of NAG-1 H6D variant in prostate cancer tumorigenesis in vivo. Human prostate cancer DU145 cells expressing the H6D NAG-1 or wild-type (WT) NAG-1 were injected subcutaneously into nude mice and tumor growth was monitored. Serum and tumor samples were collected for subsequent analysis. The H6D variant was more potent than the WT NAG-1 and inhibited tumor growth significantly compared to control mice. Mice with tumors expressing the WT NAG-1 have greater reduced both body weight and abdominal fat than mice with H6D variant tumors suggesting different activities of the WT NAG-1 and the H6D NAG-1. A significant reduction in adiponectin, leptin, and IGF-1 serum levels was observed in the tumor-bearing mice with a more profound reduction observed with expression of H6D variant. Cyclin D1 expression was suppressed in the tumors with a dramatic reduction observed in the tumor expressing the H6D variant. Our data suggest that the H6D variant of NAG-1 inhibits prostate tumorigenesis by suppressing IGF-1 and cyclin D1 expression but likely additional mechanisms are operative.
    The Prostate 08/2011; 72(6):677-89. · 3.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drug-activated gene, NAG-1, a transforming growth factor-β member, is involved in tumor progression and development. The association between NAG-1 expression and development and progression of glioma has not been well defined. Glioblastoma cell lines have lower basal expression of NAG-1 than other gliomas and normal astrocytes. Most primary human gliomas have very low levels of NAG-1 expression. NAG-1 basal expression appeared to inversely correlate with tumor grade in glioma. Aberrant promoter hypermethylation is a common mechanism for silencing of tumor suppressor genes in cancer cells. In glioblastoma cell lines, NAG-1 expression was increased by the demethylating agent, 5-aza-2'-deoxycytidine. To investigate whether the NAG-1 gene was silenced by hypermethylation in glioblastoma, we examined DNA methylation status using genomic bisulfite sequencing. The NAG-1 promoter was densely methylated in several glioblastoma cell lines as well as in primary oligodendroglioma tumor samples, which have low basal expression of NAG-1. DNA methylation at two specific sites (-53 and +55 CpG sites) in the NAG-1 promoter was strongly associated with low NAG-1 expression. The methylation of the NAG-1 promoter at the -53 site blocks Egr-1 binding and thereby suppresses Nag-1 induction. Treatment of cells with low basal NAG-1 expression with NAG-1 inducer also did not increase NAG-1. Incubation with a demethylation chemical increased Nag-1 basal expression and subsequent incubation with a NAG-1 inducer increased NAG-1 expression. We concluded from these data that methylation of specific promoter sequences causes transcriptional silencing of the NAG-1 locus in glioma and may ultimately contribute to tumor progression.
    International Journal of Cancer 03/2011; 130(2):267-77. · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antitumor effects of nonsteroidal anti-inflammatory drugs (NSAID) are assumed to be due to the inhibition of COX activity, but COX-independent mechanisms may also play an important role. NSAID-activated gene (NAG-1/GDF15) is induced by NSAIDs and has antitumorigenic activities. To determine the contribution of COX-2 inhibition and NAG-1/GDF15 expression to the prevention of colon carcinogenesis by NSAIDs, we evaluated several sulindac derivatives [des-methyl (DM)-sulindac sulfide and its prodrug DM-sulindac] that do not inhibit COX-2 activity. Sulindac sulfide and DM-sulindac induced the expression of NAG-1/GDF15 in HCT116 cells as determined by quantitative real-time PCR and Western blot. We fed APC/Min mice with 320 ppm of sulindac and doses of DM-sulindac. Only sulindac significantly inhibited tumor formation inAPC/Min mice. To determine the pharmacokinetic properties of sulindac and DM-sulindac in vivo, wild-type C57/B6 mice were fed with sulindac and DM-sulindac at 80, 160, and 320 ppm. High-performance liquid chromatography analysis revealed that the conversion of DM-sulindac to DM-sulindac sulfide (active form) was less efficient than the conversion of sulindac to sulindac sulfide (active form) in the mice. Lower levels of DM-sulindac sulfide accumulated in intestinal and colon tissues in comparison with sulindac sulfide. In addition, NAG-1/GDF15 was induced in the liver of sulindac-fed mice but not in the DM-sulindac-fed mice. Collectively, our results suggest that the tumor-inhibitory effects of sulindac in APC/Min mice may be due to, in part, NAG-1/GDF15 induction in the liver. Our study also suggests that pharmacologic properties should be carefully evaluated when developing drug candidates.
    Cancer Prevention Research 01/2011; 4(1):150-60. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a dietary phytoalexin readily available in the diet, is reported to possess antitumorigenic properties in several cancers, including colorectal. However, the underlying mechanism(s) involved is not completely understood. In the present study, we investigated the effect of resveratrol treatment on gene modulation in human colorectal cancer cells and identified activating transcription factor 3 (ATF3) as the most highly induced gene after treatment. We confirmed that resveratrol upregulates ATF3 expression, both at the mRNA and protein level, and showed resveratrol involvement in ATF3 transcriptional regulation. Analysis of the ATF3 promoter revealed the importance of early growth response-1 (Egr-1; located at -245 to -236) and Krüppel-like factor 4 (KLF4; located at -178 to -174) putative binding sites in resveratrol-mediated ATF3 transactivation. Specificity of these sites to the Egr-1 and KLF4 protein was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Resveratrol increased Egr-1 and KLF4 expression, which preceded ATF3 expression, and further suggests Egr-1 and KLF4 involvement in resveratrol-mediated activity. We provide evidence for Egr-1 and KLF4 interaction in the presence of resveratrol, which may facilitate ATF3 transcriptional regulation by this compound. Furthermore, we demonstrate that induction of apoptosis by resveratrol is mediated, in part, by increased ATF3 expression. Taken together, these results provide a novel mechanism by which resveratrol induces ATF3 expression and represent an additional explanation of how resveratrol exerts its antitumorigenic effects in human colorectal cancer cells.
    Cancer Prevention Research 01/2011; 4(1):116-27. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary (n-6)-polyunsaturated fatty acids influence cancer development, but the mechanisms have not been well characterised in gastric carcinoma. We used two in vivo models to investigate the effects of these common dietary components on tumour metastasis. In a model of experimental metastasis, immunocompromised mice were fed diets containing linoleic acid (LA) at 2% (LLA), 8% (HLA) or 12% (VHLA) by weight and inoculated intraperitoneally (i.p.) with human gastric carcinoma cells (OCUM-2MD3). To model spontaneous metastasis, OCUM-2MD3 tumours were grafted onto the stomach walls of mice fed with the different diets. In in vitro assays, we investigated invasion and ERK phosphorylation of OCUM-2MD3 cells in the presence or absence of LA. Finally, we tested whether a cyclooxygenase (COX) inhibitor, indomethacin, could block peritoneal metastasis in vivo. Both the HLA and VHLA groups showed increased incidence of tumour nodules (LA: 53%; HLA: 89%; VHLA: 100%; P<0.03); the VHLA group also displayed increased numbers of tumour nodules and higher total volume relative to LLA group in experimental metastasis model. Both liver invasion (78%) and metastasis to the peritoneal cavity (67%) were more frequent in VHLA group compared with the LLA group (22% and 11%, respectively; P<0.03) in spontaneous metastasis model. We also found that the invasive ability of these cells is greatly enhanced when exposed to LA in vitro. Linoleic acid also increased invasion of other scirrhous gastric carcinoma cells, OCUM-12, NUGC3 and MKN-45. Linoleic acid effect on OCUM-2MD3 cells seems to be dependent on phosphorylation of ERK. The data suggest that invasion and phosphorylation of ERK were dependent on COX. Indomethacin decreased the number of tumours and total tumour volume in both LLA and VHLA groups. Finally, COX-1, which is known to be an important enzyme in the generation of bioactive metabolites from dietary fatty acids, appears to be responsible for the increased metastatic behaviour of OCUM-2MD3 cells in the mouse model. Dietary LA stimulates invasion and peritoneal metastasis of gastric carcinoma cells through COX-catalysed metabolism and activation of ERK, steps that compose pathway potentially amenable to therapeutic intervention.
    British Journal of Cancer 10/2010; 103(8):1182-91. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclooxygenases (COXs) have important functions in various physiological and pathological processes. COX-2 expression is highly induced by a variety of stimuli and is observed during certain periods of embryonic development. In this report, the direct effect of COX-2 expression on embryonic development is examined in a novel COX-2 transgenic mouse model that ubiquitously expresses human COX-2 from the early stages of embryonic development. COX-2 transgenic fetuses exhibit severe skeletal malformations and die shortly after birth. Skeletal malformations are localized along the entire vertebral column and rib cage and are linked to defective formation of cartilage anlagen. The cartilage anlagen of axial skeleton fail to properly develop in transgenic embryos because of impaired precartilaginous sclerotomal condensation, which results from the reduction of cell number in the sclerotome. Despite the ubiquitous expression of COX-2, the number of apoptotic cells is highly increased in the sclerotome of transgenic embryos but not in other tissues, suggesting that it is a tissue-specific response. Therefore, the loss of sclerotomal cells due to an increased apoptosis is probably responsible for axial skeletal malformations in transgenic fetuses. In addition, the sclerotomal accumulation of p53 protein is observed in transgenic embryos, suggesting that COX-2 may induce apoptosis via the up-regulation of p53. Our results demonstrate that the aberrant COX-2 signaling during embryonic development is teratogenic and suggest a possible association of COX-2 with fetal malformations of unknown etiology.
    Journal of Biological Chemistry 03/2010; 285(21):16206-17. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: EP4 expression in human glioblastoma cells correlates with growth on soft agar. The cyclooxygenase inhibitor sulindac sulfide first altered specificity protein-1 (Sp-1) and early growth response gene-1 expression, then increased the expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3, and then decreased EP4 expression. EP4 suppression was dependent on blocking the Sp-1 binding sites in the human EP4 promoter. Mutation in the Sp-1 sites in EP4 altered the promoter activity and abolished sulindac sulfide effects. The inhibitory effect of sulindac sulfide on EP4 expression was reversed by PD98059, a mitogen-activated protein/extracellular signal-regulated kinase kinase-1/extracellular signal-regulated kinase inhibitor. Sp-1 phosphorylation was dependent on sulindac sulfide-induced Erk activation. Chromatin immunoprecipitation assay confirmed that Sp-1 phosphorylation decreases Sp-1 binding to DNA and leads to the suppression of EP4. Inhibition of cell growth on soft agar assay was found to be a highly complex process and seems to require not only the inhibition of cyclooxygenase activity but also increased expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3 and suppression of EP4 expression. Our data suggest that the suppression of EP4 expression by sulindac sulfide represents a new mechanism for understanding the tumor suppressor activity.
    Cancer Prevention Research 12/2009; · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The trans-10, cis-12 isomer of conjugated linoleic acid (CLA) causes a rapid reduction of body and adipose mass in mice. In addition to changes in adipose tissue, numerous studies have reported alterations in hepatic lipid metabolism. Livers of CLA-fed mice gain mass, partly due to lipid accumulation; however, the precise molecular mechanisms are unknown. To elucidate these mechanisms, we examined fatty acid composition and gene expression profiles of livers from a polygenic obese line of mice fed 1% trans-10, cis-12-CLA for 14 days. Analysis of gene expression data led to the identification of 1393 genes differentially expressed in the liver of CLA-fed male mice at a nominal P value of .01, and 775 were considered significant using a false discovery rate (FDR) threshold of .05. While surprisingly few genes in lipid metabolism were impacted, pathway analysis found that protein kinase A (PKA) and cyclic adenosine monophosphate (cAMP) pathways signaling pathways were affected by CLA treatment and 98 of the 775 genes were found to be regulated by hepatocyte nuclear factor 4alpha, a transcription factor important in controlling liver metabolic status.
    The Journal of nutritional biochemistry 10/2009; 21(9):848-55. · 4.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) and COX-2 are involved in cellular processes such as inflammation, apoptosis, and tumorigenesis. To address the relationship between COX-2 and NAG-1 expression, we investigated the expression of NAG-1 and COX-2 in normal and tumor tissue from human patients, Apc(Min/+) mice, and COX-2(-/-) mice. While COX-2 expression is highly induced in tumor tissue, NAG-1 expression is reduced. Furthermore, PGE(2) reduces NAG-1 while celebrex induces NAG-1 expression. The results suggest that a possible inverse relationship exists between the expression of NAG-1 and COX-2 in tumor formation of colon tissue.
    Cancer letters 09/2009; · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The expression of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) inhibits gastrointestinal tumorigenesis in NAG-1 transgenic mice (C57/BL6 background). In the present study, we investigated whether the NAG-1 protein would alter urethane-induced pulmonary lesions in NAG-1 transgenic mice on an FVB background (NAG-1(Tg+/FVB)). NAG-1(Tg+/FVB) mice had both decreased number and size of urethane-induced tumors, compared with control littermates (NAG-1(Tg+/FVB) = 16 +/- 4 per mouse versus control = 20 +/- 7 per mouse, P < 0.05). Urethane-induced pulmonary adenomas and adenocarcinomas were observed in control mice; however, only pulmonary adenomas were observed in NAG-1(Tg+/FVB) mice. Urethane-induced tumors from control littermates and NAG-1(Tg+/FVB) mice highly expressed proteins in the arachidonic acid pathway (cyclooxygenases 1/2, prostaglandin E synthase, and prostaglandin E(2) receptor) and highly activated several kinases (phospho-Raf-1 and phosphorylated extracellular signal-regulated kinase 1/2). However, only urethane-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation was decreased in NAG-1(Tg+/FVB) mice. Furthermore, significantly increased apoptosis in tumors of NAG-1(Tg+/FVB) mice compared with control mice was observed as assessed by caspase-3/7 activity. In addition, fewer inflammatory cells were observed in the lung tissue isolated from urethane-treated NAG-1(Tg+/FVB) mice compared with control mice. These results paralleled in vitro assays using human A549 pulmonary carcinoma cells. Less phosphorylated p38 MAPK was observed in cells overexpressing NAG-1 compared with control cells. Overall, our study revealed for the first time that the NAG-1 protein inhibits urethane-induced tumor formation, probably mediated by the p38 MAPK pathway, and is a possible new target for lung cancer chemoprevention
    Cancer Prevention Research 05/2009; · 4.89 Impact Factor
  • Thomas Eling, Ronald Mason
    Chemical Research in Toxicology 12/2008; 21(11):2065-6. · 4.19 Impact Factor

Publication Stats

7k Citations
1,247.07 Total Impact Points


  • 1976–2014
    • National Institute of Environmental Health Sciences
      • • Laboratory of Molecular Carcinogenesis (LMC)
      • • Laboratory of Toxicology and Pharmacology (LTP)
      Durham, North Carolina, United States
  • 2002–2012
    • Tottori University
      • Institute of Neurological Sciences
      Tottori, Tottori-ken, Japan
  • 1987–2012
    • National Institutes of Health
      • • Laboratory of Human Carcinogenesis
      • • Laboratory of Molecular Biology
      Maryland, United States
  • 2004–2011
    • University of Tennessee
      • Department of Pathobiology
      Knoxville, TN, United States
  • 1982–2011
    • Research Triangle Park Laboratories, Inc.
      Raleigh, North Carolina, United States
  • 2009
    • The University of Tennessee Medical Center at Knoxville
      Knoxville, Tennessee, United States
  • 2008
    • Pusan National University
      • Department of Microbiology
      Pusan, Busan, South Korea
  • 2003
    • Gangneung-Wonju National University
      • Department of Biology
      Kang-neung, Gangwon, South Korea
  • 1999–2002
    • Mercer University
      • Division of Basic Medical Sciences
      Atlanta, Michigan, United States
  • 1996
    • Medical College of Wisconsin
      Milwaukee, Wisconsin, United States
  • 1993
    • Max-Delbrück-Centrum für Molekulare Medizin
      Berlín, Berlin, Germany
  • 1991–1992
    • Vanderbilt University
      • Department of Medicine
      Nashville, MI, United States
  • 1989
    • University of Guelph
      • Department of Chemistry
      Guelph, Ontario, Canada
  • 1982–1988
    • University of North Carolina at Chapel Hill
      North Carolina, United States
  • 1970
    • University of Iowa
      • Department of Pharmacology
      Iowa City, Iowa, United States