Nicholas J Dyson

Harvard Medical School, Boston, Massachusetts, United States

Are you Nicholas J Dyson?

Claim your profile

Publications (120)1298.96 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE).
    The EMBO Journal 08/2014; · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
    Nucleic Acids Research 07/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss-of-function mutations in p16(INK4A) (CDKN2A) occur in approximately 80% of sporadic pancreatic ductal adenocarcinoma (PDAC), contributing to its early progression. Although this loss activates the cell-cycle-dependent kinases CDK4/6, which have been considered as drug targets for many years, p16(INK4A)-deficient PDAC cells are inherently resistant to CDK4/6 inhibitors. This study searched for targeted therapies that might synergize with CDK4/6 inhibition in this setting. We report that the IGF1R/IR inhibitor BMS-754807 cooperated with the CDK4/6 inhibitor PD-0332991 to strongly block proliferation of p16(INK4A)-deficient PDAC cells in vitro and in vivo. Sensitivity to this drug combination correlated with reduced activity of the master cell growth regulator mTORC1. Accordingly, replacing the IGF1R/IR inhibitor with the rapalog inhibitor temsirolimus broadened the sensitivity of PDAC cells to CDK4/6 inhibition. Our results establish targeted therapy combinations with robust cytostatic activity in p16(INK4A)-deficient PDAC cells and possible implications for improving treatment of a broad spectrum of human cancers characterized by p16(INK4A) loss. Cancer Res; 74(14); 1-12. ©2014 AACR.
    Cancer Research 07/2014; · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome instability (CIN), a common feature of solid tumors, promotes tumor evolution and increases drug resistance during therapy. We previously demonstrated that loss of the retinoblastoma protein (pRB) tumor suppressor causes changes in centromere structure and generates CIN. However, the mechanism and significance of this change was unclear. Here, we show that defects in cohesion are key to the pRB loss phenotype. pRB loss alters H4K20 methylation, a prerequisite for efficient establishment of cohesion at centromeres. Changes in cohesin regulation are evident during S phase, where they compromise replication and increase DNA damage. Ultimately, such changes compromise mitotic fidelity following pRB loss. Remarkably, increasing cohesion suppressed all of these phenotypes and dramatically reduced CIN in cancer cells lacking functional pRB. These data explain how loss of pRB undermines genomic integrity. Given the frequent functional inactivation of pRB in cancer, conditions that increase cohesion may provide a general strategy to suppress CIN.
    Molecular cell 03/2014; · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transition between proliferation and quiescence is frequently associated with changes in gene expression, in the extent of chromatin compaction and in histone modifications, but whether changes in chromatin state actually regulate cell cycle exit with quiescence is unclear. We discovered that primary human fibroblasts induced into quiescence exhibited tighter chromatin compaction. Mass spectrometry analysis of histone modifications revealed that H4K20me2 and -me3 are increased in quiescence and that other histone modifications are present at similar levels in proliferating and quiescent cells. Analysis of cells in S, G2/M, and G1 phases shows that H4K20me1 increases after S phase and is converted to -me2 and -me3 in quiescence. Knockdown of the enzymes that create H4K20me2 and -me3 resulted in an increased fraction of cells in S phase, a defect in exiting the cell cycle, and decreased chromatin compaction. Overexpression of Suv4-20h1, the enzyme that creates H4K20me2 from H4K20me1, resulted in G2 arrest, consistent with a role for H4K20me1 in mitosis. The results suggest that the same lysine on H4K20 may, in its different methylation states, facilitate mitotic functions in M phase and promote chromatin compaction and cell cycle exit in quiescent cells.
    Molecular biology of the cell 08/2013; · 5.98 Impact Factor
  • Brandon N Nicolay, Nicholas J Dyson
    [Show abstract] [Hide abstract]
    ABSTRACT: The pRB tumor suppressor is traditionally seen as an important regulator of the cell cycle. pRB represses the transcriptional activation of a diverse set of genes by the E2F transcription factors and prevents inappropriate S-phase entry. Advances in our understanding of pRB have documented roles that extend beyond the cell cycle and this review summarizes recent studies that link pRB to the control of cell metabolism. pRB has been shown to regulate glucose tolerance, mitogenesis, glutathione synthesis, and the expression of genes involved in central carbon metabolism. Several studies have demonstrated that pRB directly targets a set of genes that are crucial for nucleotide metabolism, and this seems likely to represent one of the ways by which pRB influences the G1/S-phase transition and S-phase progression.
    Current opinion in cell biology 08/2013; · 14.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acquired chromosomal instability and copy number alterations are hallmarks of cancer. Enzymes capable of promoting site-specific copy number changes have yet to be identified. Here, we demonstrate that H3K9/36me3 lysine demethylase KDM4A/JMJD2A overexpression leads to localized copy gain of 1q12, 1q21, and Xq13.1 without global chromosome instability. KDM4A-amplified tumors have increased copy gains for these same regions. 1q12h copy gain occurs within a single cell cycle, requires S phase, and is not stable but is regenerated each cell division. Sites with increased copy number are rereplicated and have increased KDM4A, MCM, and DNA polymerase occupancy. Suv39h1/KMT1A or HP1γ overexpression suppresses the copy gain, whereas H3K9/K36 methylation interference promotes gain. Our results demonstrate that overexpression of a chromatin modifier results in site-specific copy gains. This begins to establish how copy number changes could originate during tumorigenesis and demonstrates that transient overexpression of specific chromatin modulators could promote these events.
    Cell 07/2013; · 31.96 Impact Factor
  • A L Manning, C Benes, N J Dyson
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole chromosome instability (CIN) is a common feature of cancer cells and has been linked to increased tumor evolution and metastasis. Several studies have shown that the loss of the pRB tumor suppressor causes mitotic defects and chromosome mis-segregation. pRB is inactivated in many types of cancer and this raises the possibility that the loss of pRB may be a general cause of CIN in tumors. Paradoxically, retinoblastoma tumor cells have a relatively stable karyotype and currently the circumstances in which pRB inactivation causes CIN in human cancers are unclear. Here we utilize a fluorescence in situ hybridization-based approach to score numerical heterogeneity in chromosome copy number as a readout of CIN. Using this technique, we show that high levels of CIN correlate with the combined inactivation of pRB and p53 and that this association is evident in two independent panels of cancer cell lines. Retinoblastoma cell lines characteristically retain a wild-type TP53 gene, providing an opportunity to test the relevance of this functional relationship. We show that retinoblastoma cell lines display mitotic defects similar to those seen when pRB is depleted from non-transformed cells, but that the presence of wild-type p53 suppresses the accumulation of aneuploid cells. A similar synergy between pRB and p53 inactivation was observed in HCT116 cells. These results suggest that the loss of pRB promotes segregation errors, whereas loss of p53 allows tolerance and continued proliferation of the resulting, genomically unstable cancer cells. Hence, it is the cooperative effect of inactivation of both pRB and p53 tumor suppressor pathways that promotes CIN.Oncogene advance online publication, 24 June 2013; doi:10.1038/onc.2013.201.
    Oncogene 06/2013; · 8.56 Impact Factor
  • Luisa Di Stefano, Nicholas J Dyson
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Since their discovery in 2004, histone demethylases have emerged as key regulators of chromatin. Recent studies have started to reveal the interconnections between histone demethylases and signaling pathways, suggesting that this interplay drives fundamental biological processes. Here, we summarize the different families and subfamilies of histone demethylases and the insights into the biological roles of these enzymes that have been provided by the analysis of mutant animals. We then review recent work linking demethylases and signaling pathways. These studies suggest that demethylase activities are a component of the critical connections that enable environmental signals to modulate the epigenetic landscape of a cell. A greater mechanistic understanding of the network of signals that control chromatin states during normal cellular processes, together with a better understanding of the ways that epigenetic alterations lead to uncontrolled cell proliferation, might help in the design of effective tools for cancer therapy.
    Biomolecular concepts 02/2013; 4(1):13-27.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inactivation of the retinoblastoma tumor suppressor (pRB) alters the expression of a myriad of genes. To understand the altered cellular environment that these changes create, we took advantage of the Drosophila model system and used targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the metabolic changes that occur when RBF1, the fly ortholog of pRB, is removed. We show that RBF1-depleted tissues and larvae are sensitive to fasting. Depletion of RBF1 causes major changes in nucleotide synthesis and glutathione metabolism. Under fasting conditions, these changes interconnect, and the increased replication demand of RBF1-depleted larvae is associated with the depletion of glutathione pools. In vivo (13)C isotopic tracer analysis shows that RBF1-depleted larvae increase the flux of glutamine toward glutathione synthesis, presumably to minimize oxidative stress. Concordantly, H(2)O(2) preferentially promoted apoptosis in RBF1-depleted tissues, and the sensitivity of RBF1-depleted animals to fasting was specifically suppressed by either a glutamine supplement or the antioxidant N-acetyl-cysteine. Effects of pRB activation/inactivation on glutamine catabolism were also detected in human cell lines. These results show that the inactivation of RB proteins causes metabolic reprogramming and that these consequences of RBF/RB function are present in both flies and human cell lines.
    Genes & development 01/2013; · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The E2F transcription factors are important regulators of the cell cycle whose function is commonly misregulated in cancer. To identify novel regulators of E2F1 activity in vivo, we used Drosophila to conduct genetic screens. For this, we generated transgenic lines that allow the tissue-specific depletion of dE2F1 by RNAi. Expression of these transgenes using Gal4 drivers in the eyes and wings generated reliable and modifiable phenotypes. We then conducted genetic screens testing the capacity of Exelixis deficiencies to modify these E2F1-RNAi phenotypes. From these screens, we identified mutant alleles of Suppressor of zeste 2 [Su(z)2] and multiple Polycomb group genes as strong suppressors of the E2F1-RNA interference phenotypes. In validation of our genetic data, we find that depleting Su(z)2 in cultured Drosophila cells restores the cell-proliferation defects caused by reduction of dE2F1 by elevating the level of dE2f1. Furthermore, analyses of methylation status of histone H3 lysine 27 (H3K27me) from the published modENCODE data sets suggest that the genomic regions harboring dE2f1 gene and certain dE2f1 target genes display H3K27me during development and in several Drosophila cell lines. These in vivo observations suggest that the Polycomb group may regulate cell proliferation by repressing the transcription of dE2f1 and certain dE2F1 target genes. This mechanism may play an important role in coordinating cellular differentiation and proliferation during Drosophila development.
    G3-Genes Genomes Genetics 12/2012; 2(12):1651-60. · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Microarray studies have shown that the E2F transcription factor influences the expression of many genes but it is unclear how many of these targets are important for E2F-mediated control of cell proliferation. Results: We assembled a collection of mutant alleles of 44 dE2F1-dependent genes and tested whether these could modify visible phenotypes caused by the tissue-specific depletion of dE2F1. More than half of the mutant alleles dominantly enhanced de2f1-dsRNA phenotypes suggesting that the in vivo functions of dE2F1 can be limited by the reduction in the level of expression of many different targets. Unexpectedly, several mutant alleles suppressed de2f1-dsRNA phenotypes. One of the strongest of these suppressors was Orc5. Depletion of ORC5 increased proliferation in cells with reduced dE2F1 and specifically elevated the expression of dE2F1-regulated genes. Importantly, these effects were independent of dE2F1 protein levels, suggesting that reducing the level of ORC5 did not interfere with the general targeting of dE2F1. Conclusions: We propose that the interaction between ORC5 and dE2F1 may reflect a feedback mechanism between replication initiation proteins and dE2F1 that ensures that proliferating cells maintain a robust level of replication proteins for the next cell cycle. Developmental Dynamics 241:1695-1707, 2012. © 2012 Wiley Periodicals, Inc.
    Developmental Dynamics 09/2012; 241(11):1695-707. · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinoblastoma (RB) family of proteins regulate transcription. These proteins lack intrinsic DNA-binding activity but are recruited to specific genomic locations through interactions with sequence-specific DNA-binding factors. The best-known target of RB protein (pRB) is the E2F transcription factor; however, many other chromatin-associated proteins have been described that may allow RB family members to act at additional sites. To gain a perspective on the scale of E2F-dependent and E2F-independent functions, we generated genome-wide binding profiles of RBF1 and dE2F proteins in Drosophila larvae. RBF1 and dE2F2 associate with a large number of binding sites at genes with diverse biological functions. In contrast, dE2F1 was detected at a smaller set of promoters, suggesting that it overrides repression by RBF1/dE2F2 at a specific subset of targets. Approximately 15% of RBF1-bound regions lacked consensus E2F-binding motifs. To test whether RBF1 action at these sites is E2F independent, we examined dDP mutant larvae that lack any functional dE2F/dDP heterodimers. As measured by chromatin immunoprecipitation-microarray analysis (ChIP-chip), ChIP-quantitative PCR (qPCR), and cell fractionation, the stable association of RBF1 with chromatin was eliminated in dDP mutants. This requirement for dDP was seen at classic E2F-regulated promoters and at promoters that lacked canonical E2F-binding sites. These results suggest that E2F/DP complexes are essential for all genomic targeting of RBF1.
    Molecular and Cellular Biology 08/2012; 32(21):4375-87. · 5.04 Impact Factor
  • Source
    Brandon N Nicolay, Nicholas J Dyson
    PLoS Genetics 08/2012; 8(8):e1002909. · 8.17 Impact Factor
  • Source
    Andreas M F Heilmann, Nicholas J Dyson
    [Show abstract] [Hide abstract]
    ABSTRACT: In this issue of Genes & Development, Burke and colleagues (pp. 1156-1166) describe how the structure of retinoblastoma protein (pRb) is altered by phosphorylation at T373 or S608. These modifications cause specific conformational changes and alter pRb's interaction with E2F via two distinct mechanisms. The structures suggest that the panel of phosphorylation sites represents a versatile set of tools that are used to sculpt pRb in precise, but very different, ways.
    Genes & development 06/2012; 26(11):1128-30. · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes.
    PLoS Genetics 04/2012; 8(4):e1002618. · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: E2F transcription factors are important regulators of cell proliferation and are frequently dysregulated in human malignancies. To identify novel regulators of E2F function, we used Drosophila as a model system to screen for mutations that modify phenotypes caused by reduced levels of dE2F1. This screen identified components of the Pumilio translational repressor complex (Pumilio, Nanos, and Brain tumor) as suppressors of dE2F1-RNAi phenotypes. Subsequent experiments provided evidence that Pumilio complexes repress dE2F1 levels and that this mechanism of post-transcriptional regulation is conserved in human cells. The human Pumilio homologs Pum 1 and Pum 2 repress the translation of E2F3 by binding to the E2F3 3' untranslated region (UTR) and also enhance the activity of multiple E2F3 targeting microRNAs (miRNAs). E2F3 is an oncogene with strong proliferative potential and is regularly dysregulated or overexpressed in cancer. Interestingly, Pumilio/miRNA-mediated regulation of E2F3 is circumvented in cancer cells in several different ways. Bladder carcinomas selectively down-regulate miRNAs that cooperate with Pumilio to target E2F3, and multiple tumor cell lines shorten the 3' end of the E2F3 mRNA, removing the Pumilio regulatory elements. These studies suggest that Pumilio-miRNA repression of E2F3 translation provides an important level of E2F regulation that is frequently abrogated in cancer cells.
    Genes & Development 02/2012; 26(4):356-68. · 12.64 Impact Factor
  • Amity L Manning, Nicholas J Dyson
    [Show abstract] [Hide abstract]
    ABSTRACT: RB, a well known tumour suppressor that functions in the control of cell cycle progression and proliferation, has recently been shown to have additional functions in the maintenance of genomic stability, such that inactivation of RB family proteins promotes chromosome instability (CIN) and aneuploidy. Several studies have provided potential explanations for these phenomena that occur following RB loss, and they suggest that this new function of RB may contribute to its role in tumour suppression.
    Nature Reviews Cancer 02/2012; 12(3):220-6. · 29.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.
    Nature 01/2012; 481(7381):329-34. · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinoblastoma tumor suppressor protein (pRb) regulates various biological processes during development and tumorigenesis. Although the molecular mechanism by which pRb controls cell cycle progression is well characterized, how pRb promotes cell-type specification and differentiation is less understood. Here, we report that Extra Macrochaetae (EMC), the Drosophila homolog of inhibitor of DNA binding/differentiation (ID), is an important protein contributing to the developmental defects caused by Rb deficiency. An emc allele was identified from a genetic screen designed to identify factors that, when overexpressed, cooperate with mutations in rbf1, which encodes one of the two Rb proteins found in Drosophila. EMC overexpression in an rbf1 hypomorphic mutant background induces cone cell and photoreceptor defects but has negligible effects in the wild-type background. Interestingly, a substantial fraction of the rbf1-null ommatidia normally exhibit similar cone cell and photoreceptor defects in the absence of ectopic EMC expression. Detailed EMC expression analyses revealed that RBF1 suppresses expression of both endogenous and ectopic EMC protein in photoreceptors, thus explaining the synergistic effect between EMC overexpression and rbf1 mutations, and the developmental defect observed in rbf1-null ommatidia. Our findings demonstrate that ID family proteins are an evolutionarily conserved determinant of Rb-deficient cells, and play an important role during development.
    Journal of Cell Science 12/2011; 124(Pt 24):4203-12. · 5.33 Impact Factor

Publication Stats

14k Citations
1,298.96 Total Impact Points


  • 2000–2014
    • Harvard Medical School
      • • Department of Biological Chemistry and Molecular Pharmacology
      • • Department of Pathology
      Boston, Massachusetts, United States
  • 2013
    • Partners HealthCare
      Boston, Massachusetts, United States
  • 1998–2013
    • Harvard University
      • Center for AIDS Research
      Cambridge, MA, United States
    • Brigham and Women's Hospital
      • Department of Medicine
      Boston, MA, United States
  • 2012
    • Lerner Research Institute
      Cleveland, Ohio, United States
  • 1999–2012
    • Massachusetts General Hospital
      • • Cutaneous Biology Research Center
      • • Center for Outcomes Research (Cancer Center)
      Boston, Massachusetts, United States
    • University of Chicago
      Chicago, Illinois, United States
  • 2008
    • Universiteit Utrecht
      • Division of Developmental Biology
      Utrecht, Provincie Utrecht, Netherlands
  • 1995
    • University of California, San Francisco
      • Department of Biochemistry and Biophysics
      San Francisco, CA, United States
  • 1993
    • National Institutes of Health
      • Laboratory of Tumor Immunology and Biology
      Maryland, United States
  • 1990
    • Emory University
      Atlanta, Georgia, United States
  • 1989–1990
    • Cold Spring Harbor Laboratory
      Cold Spring Harbor, New York, United States