Hye Mi Jin

Chonnam National University Hospital, Sŏul, Seoul, South Korea

Are you Hye Mi Jin?

Claim your profile

Publications (19)93.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections and play an important role in mucosal immunity. However, the role of MAIT cells remains enigmatic in autoimmune diseases. In this study, we examined the level and function of MAIT cells in patients with rheumatic diseases. MAIT cell, cytokine, and programmed death-1 (PD-1) levels were measured by flow cytometry. Circulating MAIT cell levels were significantly reduced in systemic lupus erythematosus (SLE) and rheumatoid arthritis patients. In particular, this MAIT cell deficiency was more prominent in CD8(+) and double-negative T cell subsets, and significantly correlated with disease activity, such as SLE disease activity index and 28-joint disease activity score. Interestingly, MAIT cell frequency was significantly correlated with NKT cell frequency in SLE patients. IFN-γ production in MAIT cells was impaired in SLE patients, which was due to an intrinsic defect in the Ca(2+)/calcineurin/NFAT1 signaling pathway. In SLE patients, MAIT cells were poorly activated by α-galactosylceramide-stimulated NKT cells, thereby showing the dysfunction between MAIT cells and NKT cells. Notably, an elevated expression of PD-1 in MAIT cells and NKT cells was associated with SLE. In rheumatoid arthritis patients, MAIT cell levels were significantly higher in synovial fluid than in peripheral blood. Our study primarily demonstrates that MAIT cells are numerically and functionally deficient in SLE. In addition, we report a novel finding that this MAIT cell deficiency is associated with NKT cell deficiency and elevated PD-1 expression. These abnormalities possibly contribute to dysregulated mucosal immunity in SLE.
    Journal of immunology (Baltimore, Md. : 1950). 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gout is characterized by episodes of intense joint inflammation in response to intra-articular monosodium urate monohydrate (MSU) crystals. miR-155 is crucial for the proinflammatory activation of human myeloid cells and antigen-driven inflammatory arthritis. The functional role of miR-155 in acute gouty arthritis has not been defined. Therefore, the aim of this study was to examine the role of miR-155 in pathogenesis of acute gouty arthritis. Samples from 14 patients with acute gouty arthritis and 10 healthy controls (HCs) were obtained. Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were cultured in vitro with MSU crystals, and gene expression (human miR-155 and SHIP-1) were assessed by real-time PCR. THP-1 cells were stimulated by MSU crystals and/or miR-155 transfection and then subjected to Western blot analysis. Levels of human tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1beta in cell culture supernatants were measured by Luminex. Immunohistochemistry was performed on formalin-fixed gout tissues with anti-SHIP-1 antibody. A C57BL/6J male mouse model of gout was used to analyze the expressions of miR-155, SHIP-1, and inflammatory cytokines. The samples from gouty arthritis were highly enriched in miR-155, with levels of expression being higher than those found in PBMC from HC. Treatment of the cells with MSU crystals strongly induced miR-155. In addition, overexpression of miR-155 in the cells decreased levels of SHIP-1 and promoted production of MSU-induced proinflammatory cytokines, such as TNF-alpha and IL-1beta. Consistent with in vitro observations, miR-155 expression was elevated in the mouse model of gout. The production of inflammatory cytokines was markedly increased in MSU crystal induced peritonitis mice. Overexpression of miR-155 in the gouty SFMC leads to suppress SHIP-1 levels and enhance proinflammatory cytokines.
    Arthritis research & therapy 04/2014; 16(2):R88. · 4.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preoperative leukocytosis is known to be a negative prognostic factor for several gynecologic malignancies, but its relationship with epithelial ovarian carcinoma (EOC) is unknown. We sought to evaluate the prognostic implications of preoperative leukocytosis for women with EOC. We retrospectively reviewed the medical records of patients who underwent primary debulking surgery and adjuvant platinum-based chemotherapy for EOC between January 1993 and October 2011. Associations between leukocytosis and recurrence-free survival (RFS) and overall survival (OS) were determined by univariate analyses. Multivariate Cox proportional hazards regression was used to identify independent prognostic factors for RFS and OS. Of 155 women, 23 (14.8%) had leukocytosis and 132 (85.2%) did not have leukocytosis. RFS and OS were significantly shorter for women with leukocytosis than for women without leukocytosis (P=0.009 and P<0.0001, respectively). The mortality rate was also higher among women with leukocytosis (P<0.0001). Multivariate analysis revealed that preoperative leukocytosis (hazard ratio [HR]: 2.15; 95% confidence interval [CI]: 1.55-4.41; P=0.009), advanced stage (HR: 3.12; 95% CI: 1.44-6.75; P=0.004), and optimal cytoreduction (HR: 0.38; 95% CI: 0.14-0.70; P=0.031) were independent prognostic factors for RFS. Additionally, preoperative leukocytosis was independently associated with decreased OS (HR: 7.66; 95% CI: 2.78-21.16; P<0.0001). Among women with EOC, preoperative leukocytosis might be an independent prognostic factor for RFS and OS. A larger-scaled, prospective study is needed to verify these results.
    Gynecologic Oncology 01/2014; · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NFATc1 (nuclear factor of activated T-cells c1), a key transcription factor, plays a role in regulating expression of osteoclast-specific downstream target genes such as TRAP (tartrate-resistant acid phosphatase) and OSCAR (osteoclast-associated receptor). It has been shown that RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] induces NFATc1 expression during osteoclastogenesis at a transcriptional level. In the present study, we demonstrate that RANKL increases NFATc1 protein levels by post-translational modification. RANKL stimulates NFATc1 acetylation via HATs (histone acetyltransferases), such as p300 and PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor], thereby stabilizing NFATc1 proteins. PCAF physically interacts with NFATc1 and directly induces NFATc1 acetylation and stability, subsequently increasing the transcriptional activity of NFATc1. In addition, RANKL-mediated NFATc1 acetylation is increased by the HDAC (histone deacetylase) inhibitors sodium butyrate and scriptaid. Overexpression of HDAC5 reduces RANKL- or PCAF-mediated NFATc1 acetylation, stability and transactivation activity, suggesting that the balance between HAT and HDAC activities might play a role in the regulation of NFATc1 levels. Furthermore, RANKL and p300 induce PCAF acetylation and stability, thereby enhancing the transcriptional activity of NFATc1. Down-regulation of PCAF by siRNA (small interfering RNA) decreases NFATc1 acetylation and stability, as well as RANKL-induced osteoclastogenesis. Taken together, the results of the present study demonstrate that RANKL induces HAT-mediated NFATc1 acetylation and stability, and subsequently increases the transcriptional activity of NFATc1 during osteoclast differentiation.
    Biochemical Journal 03/2011; 436(2):253-62. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells. In this study, we demonstrate that Pim-1 positively regulates RANKL-induced osteoclastogenesis and that Pim-1 expression can be upregulated by RANKL signaling during osteoclast differentiation. The silencing of Pim-1 by RNA interference or overexpression of a dominant negative form of Pim-1 (Pim-1 DN) in bone marrow-derived macrophage cells attenuates RANKL-induced osteoclast formation. Overexpression of Pim-1 DN blocks RANKL-induced activation of TGF-β-activated kinase 1 (TAK1) and NF-κB as well as expression of NFATc1 during osteoclastogenesis. However, we found that overexpression of TAK1 in the presence of Pim-1 DN rescues NF-κB activation. Additionally, Pim-1 interacts with RANK as well as TAK1, indicating that Pim-1 is involved in RANKL-induced NF-κB activation via TAK1. Furthermore, we demonstrate that Pim-1 also regulates NFATc1 transcription activity and subsequently induces osteoclast-associated receptor expression, an osteoclast-specific gene. Taken together, our results reveal that Pim-1 positively regulates RANKL-induced osteoclastogenesis.
    The Journal of Immunology 11/2010; 185(12):7460-6. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor activator of nuclear factor-κB (RANK) and its ligand RANKL, which belong to the tumor necrosis factor (TNF) receptor-ligand family, mediate osteoclastogenesis. The crystal structure of the RANKL ectodomain (eRANKL) in complex with the RANK ectodomain (eRANK) combined with biochemical assays of RANK mutants indicated that three RANK loops (Loop1, Loop2, and Loop3) bind to the interface of a trimeric eRANKL. Loop3 is particularly notable in that it is structurally distinctive from other TNF-family receptors and forms extensive contacts with RANKL. The disulfide bond (C125-C127) at the tip of Loop3 is important for determining the unique topology of Loop3, and docking E126 close to RANKL, which was supported by the inability of C127A or E126A mutants of RANK to bind to RANKL. Inhibitory activity of RANK mutants, which contain loops of osteoprotegerin (OPG), a soluble decoy receptor to RANKL, confirmed that OPG shares the similar binding mode with RANK and OPG. Loop3 plays a key role in RANKL binding. Peptide inhibitors designed to mimic Loop3 blocked the RANKL-induced differentiation of osteoclast precursors, suggesting that they could be developed as therapeutic agents for the treatment of osteoporosis and bone-related diseases. Furthermore, some of the RANK mutations associated with autosomal recessive osteopetrosis (ARO) resulted in reduced RANKL-binding activity and failure to induce osteoclastogenesis. These results, together with structural interpretation of eRANK-eRANKL interaction, provided molecular understanding for pathogenesis of ARO.
    Proceedings of the National Academy of Sciences 11/2010; 107(47):20281-6. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor of activated T cells (NFAT) c1 plays a key role in receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation and function via induction of osteoclast-specific target genes including osteoclast-associated receptor (OSCAR), cathepsin K, and tartrate-resistant acid phosphatase. To elucidate which downstream target genes are regulated by NFATc1 during osteoclastogenesis, we used microarray analyses to examine gene expression profiles in the context of bone marrow-derived macrophages overexpressing a constitutively active form of NFATc1. Herein, we demonstrate that MHC class II transactivator (CIITA) is up-regulated downstream of NFATc1. Overexpression of CIITA in osteoclast precursors attenuates RANKL-induced osteoclast formation through down-regulation of NFATc1 and OSCAR. Epigenetic overexpression of CIITA regulates NFATc1 and OSCAR by competing with c-Fos and NFATc1 for CBP/p300 binding sites. Furthermore, silencing of CIITA by RNA interference in osteoclast precursors enhances osteoclast formation as well as NFATc1 and OSCAR expression. Taken together, our data reveal that CIITA can act as a modulator of RANKL-induced osteoclastogenesis.
    Cellular Signalling 05/2010; 22(9):1341-9. · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of NFATc1 expression is important for osteoclast differentiation and function. Herein, we demonstrate that macrophage-colony-stimulating factor induces NFATc1 degradation via Cbl proteins in a Src kinase-dependent manner. NFATc1 proteins are ubiquitinated and rapidly degraded during late stage osteoclastogenesis, and this degradation is mediated by Cbl-b and c-Cbl ubiquitin ligases in a Src-dependent manner. In addition, NFATc1 interacts endogenously with c-Src, c-Cbl, and Cbl-b in osteoclasts. Overexpression of c-Src induces down-regulation of NFATc1, and depletion of Cbl proteins blocks NFATc1 degradation during late stage osteoclastogenesis. Taken together, our data provide a negative regulatory mechanism by which macrophage-colony-stimulating factor activates Src family kinases and Cbl proteins, and subsequently, induces NFATc1 degradation during osteoclast differentiation.
    Journal of Biological Chemistry 02/2010; 285(8):5224-31. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-1 is a potent cytokine that can induce bone erosion in inflammatory sites such as rheumatoid joint regions via activation of osteoclasts. Not only is IL-1 capable of activating osteoclasts, but it is also a key cytokine involved in the differentiation, multinucleation, and survival of osteoclasts. Herein, we show that IL-1 has the potential to drive osteoclast differentiation via a receptor activator of NF-kappaB ligand (RANKL)/RANK-independent mechanism. Although IL-1 has a synergistic effect on RANKL-induced osteoclast formation, IL-1 alone cannot induce osteoclast differentiation from osteoclast precursors (bone marrow-derived macrophages (BMMs)) due to a lack of IL-1 signaling potential in these cells. However, we demonstrate that overexpression of the IL-1RI receptor in BMMs or induction of IL-1RI by c-Fos overexpression enables IL-1 alone to induce the formation of authentic osteoclasts by a RANKL/RANK-independent mechanism. The expression of IL-1RI is up-regulated by RANKL via c-Fos and NFATc1. Furthermore, the addition of IL-1 to IL-1RI overexpressing BMMs (IL-1/IL-1RI) strongly activates NF-kappaB, JNK, p38, and ERK which is a hallmark gene activation profile of osteoclastogenesis. Interestingly, IL-1/IL-1RI does not induce expression of c-Fos or NFATc1 during osteoclast differentiation, although basal levels of c-Fos and NFATc1 seem to be required. Rather, IL-1/IL-1RI strongly activates MITF, which subsequently induces osteoclast-specific genes such as osteoclast-associated receptor and tartrate-resistant acid phosphatase. Together, these results reveal that IL-1 has the potential to induce osteoclast differentiation via activation of microphthalmia transcription factor under specific microenvironmental conditions.
    The Journal of Immunology 09/2009; 183(3):1862-70. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of NF-κB, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit TNF-α-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and TNF-α.
    Molecules and Cells 09/2009; 28(3):201-7. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NFATc1 is a master regulator of RANKL-induced osteoclast differentiation and herein we investigate the regulatory mechanism of NFATc1 in osteoclast activation. Inactivation of NFATc1 strongly attenuates RANKL-induced bone resorption and overexpression of a constitutively active form of NFATc1 in osteoclasts induces formation of actin rings and resorption pits on dentin slices. We demonstrate that NFATc1 binds directly to the promoter regions of its target genes and induces expression of various genes, including LTBP3, ClC7, cathepsin K, MMP9, and c-Src, which are key players in bone resorption. Thus, NFATc1 is essential for RANKL-induced osteoclast activation via up-regulation of osteoclast-activating genes.
    FEBS letters 08/2009; 583(14):2435-40. · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A family of PRDM proteins are similar to histone methyltransferases (HMTases) with SET domain in that they modulate different cellular processes, including transcriptional regulation, through chromatin modifying activities. By applying a bioinformatic approach, we searched for proteins containing the SET domain and identified a double zinc-finger domain containing PRDM8 with HMTase activity. In vitro HMTase assay and immunoblot analysis revealed that PRDM8 specifically methylates H3K9 of histones which indicates transcriptional repression activity of PRDM8. Direct recruitment of PRDM8 to the promoter mediated transcriptional repression and indicated no involvement of HDAC. Tissue blot analyses identified PRDM8 transcripts from brain and testis in adult mouse. Consistent with these observations, we demonstrate that PRDM8 repressed the expression of steroidogenic markers, p450c17c and LHR, which indicates its regulatory role in mouse testis development.
    Biochemical and Biophysical Research Communications 08/2009; 388(1):131-6. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast differentiation from hematopoietic precursors via regulation of various transcription factors. Here, we show that upstream stimulatory factors (USFs), which are basic helix-loop-helix leucine zipper transcription factors, are involved in RANKL-mediated osteoclastogenesis and regulation of osteoclast-associated receptor (OSCAR) gene expression, which is an important costimulatory receptor for osteoclast differentiation. USF-1 and USF-2 are expressed in hematopoietic osteoclast precursors and mature osteoclasts. Interestingly, down-regulation of USF-1 by RNA interference or overexpression of a dominant-negative form of USF-1 attenuates osteoclast formation and expression of OSCAR during osteoclastogenesis. Promoter analysis and chromatin immunoprecipitation assays reveal that USFs bind directly to an E-box site in the OSCAR promoter region and activate OSCAR. In addition, USFs interact and cooperate with nuclear factor of activated T cells c1 in regulating OSCAR gene expression. Taken together, our results indicate that USFs serve as modulators in the induction of OSCAR and RANKL-mediated osteoclastogenesis.
    Journal of Molecular Biology 09/2008; 383(3):502-11. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein inhibitor of activated STAT3 (PIAS3) has been shown to regulate the activity of various transcription factors. In this study, we show that the overexpression of PIAS3 in bone marrow-derived monocyte/macrophage lineage cells attenuates osteoclast formation and down-regulates the expression of NFATc1 and osteoclast-associated receptor (OSCAR), which are important modulators in osteoclastogenesis. PIAS3 has been shown to associate with histone deacetylase 1 as well as with transcription factors, including the microphthalmia transcription factor, NFATc1, and c-Fos. Moreover, overexpression of PIAS3 inhibits the transactivation of target genes such as NFATc1 and OSCAR. This inhibitory effect of PIAS3 is possibly mediated by histone deacetylase 1 recruitment to the promoter regions of NFATc1 and OSCAR. Furthermore, silencing of PIAS3 by RNA interference in osteoclast precursors enhances osteoclast formation as well as gene expression of NFATc1 and OSCAR. Taken together, our results reveal that PIAS3 acts as a modulator in osteoclastogenesis.
    The Journal of Immunology 06/2007; 178(9):5588-94. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macrophage lineage cells (BMMs) inhibits the formation of TRAP(+) multinuclear osteoclasts, but phagocytic activity of BMMs is retained. Furthermore, overexpression of MafB in BMMs attenuates the gene induction of NFATc1 and osteoclast-associated receptor (OSCAR) during RANKL-mediated osteoclastogenesis. In addition, MafB proteins interfere with the DNA-binding ability of c-Fos, Mitf, and NFATc1, inhibiting their transactivation of NFATc1 and OSCAR. Furthermore, reduced expression of MafB by RNAi enhances osteoclastogenesis and increases expression of NFATc1 and OSCAR. Taken together, our results suggest that MafB can act as an important modulator of RANKL-mediated osteoclastogenesis.
    Blood 05/2007; 109(8):3253-9. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) induces osteoclast formation from monocyte/macrophage lineage cells via various transcription factors, including the Mi transcription factor (Mitf). Here, we show that inhibitors of differentiation/DNA binding (Ids), helix-loop-helix (HLH) transcription factors, negatively regulate TRANCE-induced osteoclast differentiation. Expression levels of Id1, Id2, and Id3 genes are significantly reduced by TRANCE during osteoclastogenesis. Interestingly, overexpression of the 3 Id genes in bone marrow-derived monocyte/macrophage lineage cells (BMMs) inhibits the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts, but it does not alter the ability of BMMs to either phagocytose or differentiate into dendritic cells (DCs). Overexpression of Id2 in BMMs attenuates the gene induction of nuclear factor of activated T cells c1 (NFATc1) and osteoclast-associated receptor (OSCAR) during TRANCE-mediated osteoclastogenesis. Furthermore, Id proteins interact with Mitf, a basic HLH (bHLH) transcription factor, and inhibit its transactivation of OSCAR, which is a costimulatory receptor expressed by osteoclast precursors, by attenuating the DNA binding ability of Mitf to the E-box site of the OSCAR promoter. Taken together, our results reveal both a new facet of negative regulation, mediated by Id proteins, as well as the mechanism whereby TRANCE signaling overcomes it, allowing osteoclastogenesis to proceed.
    Blood 05/2006; 107(7):2686-93. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone remodeling is accompanied by the differentiation of osteoclasts from the monocyte/macrophage lineage of hematopoietic cells. The osteoclast differentiation process requires receptor activator of nuclear factor kappa B (NF-kappa B) ligand (RANKL), which causes complex changes in the expression of various genes. In a cDNA microarray study to identify genes targeted by RANKL, we found that monokine induced by the interferon-gamma (IFN-gamma) (MIG) gene was up-regulated in osteoclast precursor cells. The increase in MIG expression by RANKL was confirmed by reverse transcription-polymerase chain reaction and Western blot analysis. RANKL induction of MIG required the activity of NF-kappa B, whose binding site is present in the MIG promoter. MIG induction by RANKL was also dependent on p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 1 (STAT1). RANKL stimulated the phosphorylation of Ser727 of STAT1, which required p38 activity. MIG secreted on RANKL treatment could stimulate the migration and adhesion of osteoclast precursors and osteoclasts that were primed to express CXCR3, the MIG receptor, by macrophage-colony-stimulating factor (M-CSF). Therefore, we provide the first evidence demonstrating that RANKL stimulates the serine phosphorylation of STAT1 through the p38 MAPK pathway, causing MIG gene transcription and secretion, which may have a role in recruiting CXCR3-positive osteoclast precursors and osteoclasts to bone remodeling or inflammatory sites.
    Blood 05/2005; 105(7):2963-9. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RANKL, a member of tumor necrosis factor (TNF) superfamily, regulates the differentiation, activation, and survival of osteoclasts through binding to its cognate receptor, RANK. RANK can interact with several TNF-receptor-associated factors (TRAFs) and activates signaling molecules including Akt, NF-kappaB, and MAPKs. Although the transient elevation of reactive oxygen species (ROS) by receptor activation has been shown to act as a cellular secondary messenger, the involvement of ROS in RANK signaling pathways has been not characterized. In this study, we found that RANKL stimulated ROS generation in osteoclasts. Pretreatment of osteoclasts with the antioxidants N-acetyl-l-cystein and glutathione reduced RANKL-induced Akt, NF-kappaB, and ERK activation. The reduced NF-kappaB activity by antioxidants was associated with decreased IKK activity and IkappaBalpha phosphorylation. In contrast, antioxidants did not prevent TNF-alpha-induced Akt and NF-kappaB activation. Pretreatment with antioxidants also significantly reduced RANKL-induced actin ring formation, required for bone resorbing activity, and osteoclast survival. Taken together, our results suggest that ROS act as mediators in RANKL-induced signaling pathways and cellular events.
    Experimental Cell Research 01/2005; 301(2):119-27. · 3.56 Impact Factor
  • Source

Publication Stats

358 Citations
93.16 Total Impact Points

Institutions

  • 2014
    • Chonnam National University Hospital
      Sŏul, Seoul, South Korea
    • Korea University
      • Department of Obstetrics and Gynecology
      Sŏul, Seoul, South Korea
  • 2006–2011
    • Chonnam National University
      • Department of Pharmacology
      Gwangju, Gwangju, South Korea
  • 2005
    • Chosun University
      • National Research Laboratory for Bone Metabolism
      Goyang, Gyeonggi, South Korea
    • Seoul National University
      • College of Dentistry
      Seoul, Seoul, South Korea