Sung-Jun Han

The National Institute of Diabetes and Digestive and Kidney Diseases, Maryland, United States

Are you Sung-Jun Han?

Claim your profile

Publications (11)67.24 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: An increase in the rate of hepatic glucose production is the major determinant of fasting hyperglycemia in type 2 diabetes. A better understanding of the signaling pathways and molecules that regulate hepatic glucose metabolism is therefore of great clinical importance. Recent studies suggest that an increase in vagal outflow to the liver leads to decreased hepatic glucose production and reduced blood glucose levels. Since acetylcholine (ACh) is the major neurotransmitter of the vagus nerve and exerts its parasympathetic actions via activation of muscarinic ACh receptors (mAChRs), we examined the potential metabolic relevance of hepatocyte mAChRs. We initially demonstrated that the M(3) mAChR is the only mAChR subtype expressed by mouse liver/hepatocytes. To assess the physiological role of this receptor subtype in regulating hepatic glucose fluxes and glucose homeostasis in vivo, we used gene targeting and transgenic techniques to generate mutant mice lacking or overexpressing M(3) receptors in hepatocytes only. Strikingly, detailed in vivo phenotyping studies failed to reveal any significant metabolic differences between the M(3) receptor mutant mice and their control littermates, independent of whether the mice were fed regular or a high-fat diet. Moreover, the expression levels of genes for various key transcription factors, signaling molecules, and enzymes regulating hepatic glucose fluxes were not significantly altered in the M(3) receptor mutant mice. This rather surprising finding suggests that the pronounced metabolic effects mediated by activation of hepatic vagal nerves are mediated by noncholinergic signaling pathways.
    Diabetes 09/2009; 58(12):2776-87. · 7.90 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.
    Proceedings of the National Academy of Sciences 04/2009; 106(15):6398-403. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Little is known about the nature of the conformational changes that convert G-protein-coupled receptors (GPCRs), which bind diffusible ligands, from their resting into their active states. To gain structural insight into this process, various laboratories have used disulfide cross-linking strategies involving cysteine-substituted mutant GPCRs. Several recent disulfide cross-linking studies using the M(3) muscarinic acetylcholine receptor as a model system have led to novel insights into the conformational changes associated with the activation of this prototypical class I GPCR. These structural changes are predicted to involve multiple receptor regions, primarily distinct segments of transmembrane helices III, VI and VII and helix 8. Given the high degree of structural homology found among most GPCRs, it is likely that these findings will be of considerable general relevance. A better understanding of the molecular mechanisms underlying GPCR activation might lead to novel strategies aimed at modulating GPCR function for therapeutic purposes.
    Trends in Pharmacological Sciences 11/2008; 29(12):616-25. · 9.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: G protein-coupled receptor (GPCR) function can be modulated by different classes of ligands including full and inverse agonists. At present, little is known about the conformational changes that agonist ligands induce in their target GPCRs. In this study, we employed an in situ disulfide cross-linking strategy to monitor ligand-induced structural changes in a series of cysteine (Cys)-substituted mutant M 3 muscarinic acetylcholine receptors. One of our goals was to study whether the cytoplasmic end of transmembrane domain V (TM V), a region known to be critically involved in receptor/G protein coupling, undergoes a major conformational change, similar to the adjacent region of TM VI. Another goal was to determine and compare the disulfide cross-linking patterns observed after treatment of the different mutant receptors with full versus inverse muscarinic agonists. Specifically, we generated 20 double Cys mutant M 3 receptors harboring one Cys substitution within the cytoplasmic end of TM V (L249-I253) and a second one within the cytoplasmic end of TM VI (A489-L492). These receptors were transiently expressed in COS-7 cells and subsequently characterized in pharmacological and disulfide cross-linking studies. Our cross-linking data, in conjunction with a three-dimensional model of the M 3 muscarinic receptor, indicate that M 3 receptor activation does not trigger major structural disturbances within the cytoplasmic segment of TM V, in contrast to the pronounced structural changes predicted to occur at the cytoplasmic end of TM VI. We also demonstrated that full and inverse muscarinic agonists had distinct effects on the efficiency of disulfide bond formation in specific double Cys mutant M 3 receptors. The present study provides novel information about the dynamic changes that accompany M 3 receptor activation and how the receptor conformations induced (or stabilized) by full versus inverse muscarinic agonists differ from each other at the molecular level. Because all class I GPCRs are predicted to share a similar transmembrane topology, the conclusions drawn from the present study should be of broad general relevance.
    Biochemistry 04/2008; 47(9):2776-88. · 3.38 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
    Journal of Receptor and Signal Transduction Research 02/2008; 28(1-2):93-108. · 1.63 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The activity of G protein-coupled receptors can be modulated by different classes of ligands, including agonists that promote receptor signaling and inverse agonists that reduce basal receptor activity. The conformational changes in receptor structure induced by different agonist ligands are not well understood at present. In this study, we employed an in situ disulfide cross-linking strategy to monitor ligand-induced conformational changes in a series of cysteine-substituted mutant M(3) muscarinic acetylcholine receptors. The observed disulfide cross-linking patterns indicated that muscarinic agonists trigger a separation of the N-terminal segment of the cytoplasmic tail (helix 8) from the cytoplasmic end of transmembrane domain I. In contrast, inverse muscarinic agonists were found to increase the proximity between these two receptor regions. These findings provide a structural basis for the opposing biological effects of muscarinic agonists and inverse agonists. This study also provides the first piece of direct structural information as to how the conformations induced by these two functionally different classes of ligands differ at the molecular level. Given the high degree of structural homology found among most G protein-coupled receptors, our findings should be of broad general relevance.
    Journal of Biological Chemistry 10/2007; 282(36):26284-93. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.
    Cell Metabolism 07/2006; 3(6):449-61. · 14.62 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The five muscarinic acetylcholine receptors (M1-M5 mAChRs) mediate a very large number of important physiological functions (Caulfield, 1993; Caulfield and Birdsall, 1998; Wess, 2004). Because of the lack of small molecule ligands endowed with a high degree of receptor subtype selectivity and the fact that most tissues or cell types express two or more mAChR subtypes, identification of the physiological and pathophysiological roles of the individual mAChR subtypes has proved to be a challenging task. To overcome these difficulties, we recently generated mutant mouse lines deficient in each of the five mAChR genes (M1R-/- mice, M2R-/- mice, M3R-/- mice, etc. [Wess, 2004]). Phenotyping studies showed that each of the five mutant mouse lines displayed characteristic physiological, pharmacological, behavioral, biochemical, or neurochemical deficits (Wess, 2004). This chapter summarizes recent findings dealing with the importance of the M2mAChR for cognitive processes and the roles of the M1 and M3 mAChRs in mediating stimulation of glandular secretion.
    Journal of Molecular Neuroscience 02/2006; 30(1-2):157-60. · 2.89 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To study the conformational changes that convert G protein-coupled receptors (GPCRs) from their resting to their active state, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system. Specifically, we employed a recently developed in situ disulfide cross-linking strategy that allows the formation of disulfide bonds in Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. At present, little is known about the conformational changes that GPCR ligands induce in the immediate vicinity of the ligand-binding pocket. To address this issue, we generated 11 Cys-substituted mutant M(3) muscarinic receptors and characterized these receptors in transfected COS-7 cells. All analyzed mutant receptors contained an endogenous Cys residue (Cys-532(7.42)) located within the exofacial segment of transmembrane domain (TM) VII, close to the agonist-binding site. In addition, all mutant receptors harbored a second Cys residue that was introduced into the exofacial segment of TM III, within the sequence Leu-142(3.27)-Asn-152(3.37). Disulfide cross-linking studies showed that muscarinic agonists, but not antagonists, promoted the formation of a disulfide bond between S151(3.36)C and Cys-532. A three-dimensional model of the inactive state of the M(3) muscarinic receptor indicated that Cys-532 and Ser-151 face each other in the center of the TM receptor core. Our cross-linking data therefore support the concept that agonist activation pulls the exofacial segments of TMs VII and III closer to each other. This structural change may represent one of the early conformational events triggering the more pronounced structural reorganization of the intracellular receptor surface. To the best of our knowledge, this is the first direct demonstration of a conformational change occurring in the immediate vicinity of the binding site of a GPCR activated by a diffusible ligand.
    Journal of Biological Chemistry 11/2005; 280(41):34849-58. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The conformational changes that convert G protein-coupled receptors (GPCRs) activated by diffusible ligands from their resting into their active states are not well understood at present. To address this issue, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system, employing a recently developed disulfide cross-linking strategy that allows the formation of disulfide bonds using Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. In the present study, we generated and analyzed 30 double Cys mutant M(3) receptors, all of which contained one Cys substitution within the C-terminal portion of transmembrane domain (TM) VII (Val-541 to Ser-546) and another one within the C-terminal segment of TM I (Val-88 to Phe-92). Following their transient expression in COS-7 cells, all mutant receptors were initially characterized in radioligand binding and second messenger assays (carbachol-induced stimulation of phosphatidylinositol hydrolysis). This analysis showed that all 30 double Cys mutant M(3) receptors were able to bind muscarinic ligands with high affinity and retained the ability to stimulate G proteins with high efficacy. In situ disulfide cross-linking experiments revealed that the muscarinic agonist, carbachol, promoted the formation of cross-links between specific Cys pairs. The observed pattern of disulfide cross-links, together with receptor modeling studies, strongly suggested that M(3) receptor activation induces a major rotational movement of the C-terminal portion of TM VII and increases the proximity of the cytoplasmic ends of TM I and VII. These findings should be of relevance for other family A GPCRs.
    Journal of Biological Chemistry 08/2005; 280(26):24870-9. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Muscarinic acetylcholine receptors (mAChRs) expressed by pancreatic acinar cells play an important role in mediating acetylcholine-dependent stimulation of digestive enzyme secretion. To examine the potential roles of M(1) and M(3) mAChRs in this activity, we used M(1) and M(3) receptor single knockout (KO) and M(1)/M(3) receptor double KO mice as novel experimental tools. Specifically, we examined the ability of the muscarinic agonist carbachol to stimulate amylase secretion in vitro, using dispersed pancreatic acini prepared from wild-type and mAChR mutant mice. Quantitative reverse transcription-polymerase chain reaction studies using RNA prepared from mouse pancreatic acini showed that deletion of the M(1) or M(3) mAChR genes did not lead to significantly altered mRNA levels of the remaining mAChR subtypes. Moreover, immunoprecipitation studies with M(1) and M(3) mAChR-selective antisera demonstrated that both mAChR subtypes are expressed by mouse pancreatic acini. Strikingly, carbachol-induced stimulation of amylase secretion was significantly impaired in acinar preparations from both M(1) and M(3) receptor single KO mice and abolished in acinar preparations from M(1)/M(3) receptor double KO mice. However, another pancreatic secretagogue, bombesin, retained its ability to fully stimulate amylase secretion in acinar preparations from M(1)/M(3) receptor double KO mice. Together, these studies support the concept that cholinergic stimulation of pancreatic amylase secretion is mediated by a mixture of M(1) and M(3) mAChRs and that other mAChR subtypes do not make a significant contribution to this activity. These findings clarify the long-standing question regarding the molecular nature of the mAChR subtypes mediating the secretion of digestive enzymes from the exocrine pancreas.
    Journal of Pharmacology and Experimental Therapeutics 07/2005; 313(3):995-1002. · 3.89 Impact Factor

Publication Stats

239 Citations
39 Downloads
718 Views
67.24 Total Impact Points

Institutions

  • 2006–2009
    • The National Institute of Diabetes and Digestive and Kidney Diseases
      Maryland, United States
  • 2005–2009
    • National Institutes of Health
      • Laboratory of Bioorganic Chemistry (LBC)
      Bethesda, MD, United States