George Sgouros

Johns Hopkins University, Baltimore, Maryland, United States

Are you George Sgouros?

Claim your profile

Publications (184)857.39 Total impact

  • George Sgouros, David M Goldenberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Precision medicine is the selection of a treatment modality that is specifically tailored to the genetic and phenotypic characteristics of a particular patient's disease. In cancer, the objective is to treat with agents that inhibit cell signalling pathways that drive uncontrolled proliferation and dissemination of the disease. To overcome the eventual resistance to pathway inhibition therapy, this treatment modality has been combined with chemotherapy. We propose that pathway inhibition therapy is more rationally combined with radiopharmaceutical therapy (RPT), a cytotoxic treatment that is also targeted. RPT exploits pharmaceuticals that either bind specifically to tumours or accumulate by a broad array of physiological mechanisms indigenous to the neoplastic cells to deliver radiation specifically to these cells. Consistent with pathway inhibition therapy and in contrast to chemotherapy, RPT is well tolerated. However, the potential of RPT has not been fully exploited; for the most part, treatment has been implemented without using the ability to customise RPT by imaging and deriving individual patient tumour and normal organ radiation absorbed doses. These are more closely related to biological response and their determination should enable RPT treatment administration to maximum therapeutic benefit by treating to normal organ tolerance or demonstrating futility via tumour dosimetry. This is the essence of precision medicine.
    European journal of cancer (Oxford, England: 1990) 06/2014; · 4.12 Impact Factor
  • George Sgouros, Robert F Hobbs
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (e.g., nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (e.g., Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities such as chemotherapy, wherein imaging is not generally used. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled ((90)Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5mm) are no longer sufficient. This limitation may be overcome by using preclinical models to implement macromodeling to micromodeling. In contrast to chemotherapy, RPT offers the possibility of evaluating radiopharmaceutical distributions, calculating tumor and normal tissue absorbed doses, and devising a treatment plan that is optimal for a specific patient or specific group of patients.
    Seminars in nuclear medicine 05/2014; 44(3):172-178. · 3.96 Impact Factor
  • George Sgouros, Robert F Hobbs, Diane S Abou
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiopharmaceutical therapy (RPT) is a treatment modality that involves the use of radioactively labeled targeting agents to deliver a cytotoxic dose of radiation to tumor while sparing normal tissue. The biologic function of the target and the biologic action of the targeting agent is largely irrelevant as long as the targeting agent delivers cytotoxic radiation to the tumor. Preclinical RPT studies use imaging and ex vivo evaluation of radioactivity concentration in target and normal tissues to obtain biodistribution and pharmacokinetic data that can be used to evaluate radiation absorbed doses. Since the efficacy and toxicity of RPT depend on radiation absorbed dose, this quantity can be used to translate results from preclinical studies to human studies. The absorbed dose can also be used to customize therapy to account for pharmacokinetic and other differences among patients so as to deliver a prespecified absorbed dose to the tumor or to dose-limiting tissue. The combination of RPT with other agents can be investigated and optimized by identifying the effect of other agents on tumor or normal tissue radiosensitivity and also on how other agents change the absorbed dose to these tissues. RPT is a distinct therapeutic modality whose mechanism of action is well understood. Measurements can be made in preclinical models to help guide clinical implementation of RPT and optimize combination therapy using RPT.
    American Society of Clinical Oncology educational book / ASCO. American Society of Clinical Oncology. Meeting. 01/2014; 34:e121-5.
  • George Sgouros, David M. Goldenberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Precision medicine is the selection of a treatment modality that is specifically tailored to the genetic and phenotypic characteristics of a particular patient’s disease. In cancer, the objective is to treat with agents that inhibit cell signalling pathways that drive uncontrolled proliferation and dissemination of the disease. To overcome the eventual resistance to pathway inhibition therapy, this treatment modality has been combined with chemotherapy. We propose that pathway inhibition therapy is more rationally combined with radiopharmaceutical therapy (RPT), a cytotoxic treatment that is also targeted. RPT exploits pharmaceuticals that either bind specifically to tumours or accumulate by a broad array of physiological mechanisms indigenous to the neoplastic cells to deliver radiation specifically to these cells. Consistent with pathway inhibition therapy and in contrast to chemotherapy, RPT is well tolerated. However, the potential of RPT has not been fully exploited; for the most part, treatment has been implemented without using the ability to customise RPT by imaging and deriving individual patient tumour and normal organ radiation absorbed doses. These are more closely related to biological response and their determination should enable RPT treatment administration to maximum therapeutic benefit by treating to normal organ tolerance or demonstrating futility via tumour dosimetry. This is the essence of precision medicine.
    European Journal of Cancer. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
    Radiation Research 01/2014; 181(1):90-8. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 10(8) primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3-4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image-based dosimetry in nuclear medicine.
    Physics in Medicine and Biology 11/2013; 58(22):8099-8120. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Combination treatment is a hallmark of cancer therapy. Although the rationale for combination radiopharmaceutical therapy was described in the mid-1990s, such treatment strategies have only been implemented clinically recently and without a rigorous methodology for treatment optimization. Radiobiologic and quantitative imaging-based dosimetry tools are now available that enable rational implementation of combined targeted radiopharmaceutical therapy. Optimal implementation should simultaneously account for radiobiologic normal-organ tolerance while optimizing the ratio of 2 different radiopharmaceuticals required to maximize tumor control. We have developed such a methodology and applied it to hypothetical myeloablative treatment of non-Hodgkin lymphoma (NHL) patients using (131)I-tositumomab and (90)Y-ibritumomab tiuxetan. The range of potential administered activities (AAs) is limited by the normal-organ maximum-tolerated biologic effective doses (MTBEDs) arising from the combined radiopharmaceuticals. Dose-limiting normal organs are expected to be the lungs for (131)I-tositumomab and the liver for (90)Y-ibritumomab tiuxetan in myeloablative NHL treatment regimens. By plotting the limiting normal-organ constraints as a function of the AAs and calculating tumor biologic effective dose (BED) along the normal-organ MTBED limits, we obtained the optimal combination of activities. The model was tested using previously acquired patient normal-organ and tumor kinetic data and MTBED values taken from the literature. The average AA value based solely on normal-organ constraints was 19.0 ± 8.2 GBq (range, 3.9-36.9 GBq) for (131)I-tositumomab and 2.77 ± 1.64 GBq (range, 0.42-7.54 GBq) for (90)Y-ibritumomab tiuxetan. Tumor BED optimization results were calculated and plotted as a function of AA for 5 different cases, established using patient normal-organ kinetics for the 2 radiopharmaceuticals. Results included AA ranges that would deliver 95% of the maximum tumor BED, allowing for informed inclusion of clinical considerations, such as a maximum-allowable (131)I administration. A rational approach for combination radiopharmaceutical treatment has been developed within the framework of a proven 3-dimensional (3D) personalized dosimetry software, 3D-RD, and applied to the myeloablative treatment of NHL. We anticipate that combined radioisotope therapy will ultimately supplant single radioisotope therapy, much as combination chemotherapy has substantially replaced single-agent chemotherapy.
    Journal of Nuclear Medicine 08/2013; · 5.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The higher potential efficacy of alpha-particle radiopharmaceutical therapy lies in the 3 to 8-fold greater biological effectiveness (RBE) of alpha particles relative to photon or beta-particle radiation. This greater RBE, however, also applies to normal tissue, thereby reducing the potential advantage of high RBE. Since alpha particles typically cause DNA double strand breaks (DSBs), targeting tumors that are defective in DSB repair effectively increases the RBE, yielding a secondary, RBE-based differentiation between tumor and normal tissue that is complementary to conventional, receptor-mediated tumor targeting. In some triple negative breast cancers (TNBC, ER-/PR-/HER-2-), germline mutation in BRCA-1, a key gene in homologous recombination (HR) DSB repair, predisposes patients to early onset of breast cancer. These patients have few treatment options once the cancer has metastasized. In this study, we investigated the efficacy of alpha particle emitter, 213Bi labeled anti-EGFR antibody, Cetuximab, in BRCA-1 defective TNBC. 213Bi-Cetuximab was found to be significantly more effective in the BRCA-1 mutated TNBC cell line HCC1937 than BRCA-1 competent TNBC cell MDA-MB-231. siRNA knockdown of BRCA-1 or DNA-PKcs, a key gene in non-homologous end joining (NHEJ) DSB repair pathway, also sensitized TNBC cells to 213Bi-Cetuximab. Furthermore, the small molecule inhibitor of DNA-PKcs, NU7441, sensitized BRCA-1 competent TNBC cells to alpha particle radiation. Immunofluorescent staining of γH2AX foci and comet assay confirmed that enhanced RBE is caused by impaired DSB repair. These data offer a novel strategy for enhancing conventional receptor-mediated targeting with an additional, potentially synergistic radiobiological targeting that could be applied to TNBC.
    Molecular Cancer Therapeutics 07/2013; · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.
    Physics in Medicine and Biology 05/2013; 58(11):3631-3647. · 2.70 Impact Factor
  • Ahmed Meghzifene, George Sgouros
    [Show abstract] [Hide abstract]
    ABSTRACT: Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a priority for healthcare providers in many countries. The IAEA's response to meet the increasing needs for training has been 2-folds. Through its regular program, a priority is given to the development of standardized syllabi and education and clinical training guides. Through its technical cooperation programme, support is given for setting up national medical physics education and clinical training programs in countries. In addition, fellowships are granted for professionals working in the field for specialized training, and workshops are organized at the national and regional level in specialized topics of nuclear medicine physics. So as to support on-the-job training, the IAEA has also setup a gamma camera laboratory in Seibersdorf, Austria. The laboratory is also equipped with QC tools and equipments, and radioisotopes are procured when training events are held. About 2-3 specialized courses are held every year for medical physicists at the IAEA gamma camera laboratory. In the area of research and development, the IAEA supports, through its coordinated research projects, new initiatives in quantitative nuclear medicine and internal dosimetry. The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients.
    Seminars in nuclear medicine 05/2013; 43(3):181-7. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Salivary gland toxicity is of concern in radioiodine treatment of thyroid cancer. Toxicity is often observed while the estimated radiation absorbed dose (AD) values are below expected toxicity thresholds. Monte Carlo-based voxelized 3-dimensional radiobiological dosimetry (3D-RD) calculations of the salivary glands from eight metastatic thyroid cancer patients treated with 131I are presented with the objective of resolving this discrepancy. Methods: GEANT4 Monte Carlo simulations were performed for 131I, based on pretherapeutic 124I PET/CT imaging corrected for partial volume effect, and the results scaled to the therapeutic administered activities. For patients with external regions of high uptake proximal to the salivary glands, such as thyroid remnants or lymph node metastases, separate simulations were run to quantify the AD contributions from both (A) the salivary glands themselves, and (B) the external proximal region of high uptake (present for five patients). The contribution from the whole body outside the field of view was also estimated using modeling. Voxelized and average ADs and biological effective doses (BEDs) were calculated. Results: The estimated average therapeutic ADs were 2.26 Gy considering all contributions and 1.94 Gy from the self-dose component only. The average contribution from the external region of high uptake was 0.54 Gy. This difference was more pronounced for the submandibular glands (2.64 versus 2.10 Gy) compared to the parotid glands (1.88 Gy versus 1.78 Gy). The BED values were on average only 6.6 % higher than (2.41 Gy) the ADs. Conclusion: The external sources of activity contribute significantly to the salivary gland AD, however neither this contribution, nor the radiobiological effect quantified by the BED are in themselves sufficient to explain the clinically observed toxicity.
    The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of... 03/2013; 57(1):79-91. · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate-specific membrane antigen (PSMA) is a type II integral membrane protein expressed on the surface of prostate cancer (PCa) cells, particularly in androgen-independent, advanced, and metastatic disease. Previously, we demonstrated that N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-(18)F-fluorobenzyl-l-cysteine ((18)F-DCFBC) could image an experimental model of PSMA-positive PCa using PET. Here, we describe the initial clinical experience and radiation dosimetry of (18)F-DCFBC in men with metastatic PCa. Five patients with radiologic evidence of metastatic PCa were studied after the intravenous administration of 370 MBq (10 mCi) of (18)F-DCFBC. Serial PET was performed until 2 h after administration. Time-activity curves were generated for selected normal tissues and metastatic foci. Radiation dose estimates were calculated using OLINDA/EXM 1.1. Most vascular organs demonstrated a slow decrease in radioactivity concentration over time consistent with clearance from the blood pool, with primarily urinary radiotracer excretion. Thirty-two PET-positive suspected metastatic sites were identified, with 21 concordant on both PET and conventional imaging for abnormal findings compatible with metastatic disease. Of the 11 PET-positive sites not identified on conventional imaging, most were within the bone and could be considered suggestive for the detection of early bone metastases, although further validation is needed. The highest mean absorbed dose per unit administered radioactivity (μGy/MBq) was in the bladder wall (32.4), and the resultant effective dose was 19.9 ± 1.34 μSv/MBq (mean ± SD). Although further studies are needed for validation, our findings demonstrate the potential of (18)F-DCFBC as a new positron-emitting imaging agent for the detection of metastatic PCa. This study also provides dose estimates for (18)F-DCFBC that are comparable to those of other PET radiopharmaceuticals such as (18)F-FDG.
    Journal of Nuclear Medicine 12/2012; 53(12):1883-91. · 5.77 Impact Factor
  • George Sgouros, Pat Zanzonico
    Journal of Nuclear Medicine 11/2012; 53(11):20N. · 5.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Peptide receptor radionuclide therapy (PRRT) delivers high absorbed doses to kidneys and may lead to permanent nephropathy. Reliable dosimetry of kidneys is thus critical for safe and effective PRRT. The aim of this work was to assess the feasibility of planning PRRT based on 3D radiobiological dosimetry (3D-RD) in order to optimize both the amount of activity to administer and the fractionation scheme, while limiting the absorbed dose and the biological effective dose (BED) to the renal cortex.Methods: Planar and SPECT data were available for a patient examined with (111)In-DTPA-octreotide at 0.5 (planar only), 4, 24, and 48 h post-injection. Absorbed dose and BED distributions were calculated for common therapeutic radionuclides, i.e., (111)In, (90)Y and (177)Lu, using the 3D-RD methodology. Dose-volume histograms were computed and mean absorbed doses to kidneys, renal cortices, and medullae were compared with results obtained using the MIRD schema (S-values) with the multiregion kidney dosimetry model. Two different treatment planning approaches based on (1) the fixed absorbed dose to the cortex and (2) the fixed BED to the cortex were then considered to optimize the activity to administer by varying the number of fractions.Results: Mean absorbed doses calculated with 3D-RD were in good agreement with those obtained with S-value-based SPECT dosimetry for (90)Y and (177)Lu. Nevertheless, for (111)In, differences of 14% and 22% were found for the whole kidneys and the cortex, respectively. Moreover, the authors found that planar-based dosimetry systematically underestimates the absorbed dose in comparison with SPECT-based methods, up to 32%. Regarding the 3D-RD-based treatment planning using a fixed BED constraint to the renal cortex, the optimal number of fractions was found to be 3 or 4, depending on the radionuclide administered and the value of the fixed BED. Cumulative activities obtained using the proposed simulated treatment planning are compatible with real activities administered to patients in PRRT.Conclusions: The 3D-RD treatment planning approach based on the fixed BED was found to be the method of choice for clinical implementation in PRRT by providing realistic activity to administer and number of cycles. While dividing the activity in several cycles is important to reduce renal toxicity, the clinical outcome of fractionated PRRT should be investigated in the future.
    Medical Physics 10/2012; 39(10):6118-6128. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification-based guidance for radionuclide dosimetry.
    Journal of Nuclear Medicine 06/2012; 53(8):1310-25. · 5.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the human and murine models. The renal cortex and medulla S-values were also calculated and the results compared to traditional absorbed fraction calculations. The nephron model enables a more optimal implementation of treatment and is a critical step in understanding toxicity for human translation of targeted α-particle therapy. The S-values established here will enable a MIRD-type application of α-particle dosimetry for α-emitters, i.e. measuring the TIA in the kidney (or renal cortex) will provide meaningful and accurate nephron-level dosimetry.
    Physics in Medicine and Biology 06/2012; 57(13):4403-24. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metastases of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histogram results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e. the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 to 20 Gy. The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the absorbed fraction method of dose calculation.
    Physics in Medicine and Biology 05/2012; 57(10):3207-22. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for new therapeutic agents that are effective against cancer has been difficult and expensive. The activity of anticancer candidate agents against human cancer-derived cell lines in immunocompromised mice is an important tool in this search. Because ATP is a naturally occurring small molecule, its radiolabeled form poses many advantages as a potential anticancer therapeutic agent. We previously found that a single, low-dose intravenous injection of [ ( 32) P]ATP inhibited the growth of xenografted tumors in nude mice for up to several weeks. The current study describes the biodistribution and the results and advantages of multi-dose administration of this potential drug. Future studies should investigate the mechanism involved in the possible use of [ ( 32) P]ATP as a cytotoxic agent that homes naturally to the tumor microenvironment.
    Cell cycle (Georgetown, Tex.) 05/2012; 11(10):1878-82. · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values--absorbed dose to a target tissue per nuclear transformation in a source tissue--are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms--were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the newborn nuclear medicine patient based upon the UF hybrid computational phantom. Photon dose response functions, photon and electron SAFs, and tables of radionuclide S values for the newborn child--both male and female--are given in a series of four electronic annexes available at stacks.iop.org/pmb/57/1433/mmedia. These values can be applied to optimization studies of image quality and stochastic risk for this most vulnerable class of pediatric patients.
    Physics in Medicine and Biology 02/2012; 57(5):1433-57. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (153)Sm-ethylenediamine tetramethylene phosphonic acid ((153)Sm-EDTMP) therapy for osteosarcoma is being investigated. In this study, we analyzed the influence of (153)Sm-EDTMP administered activity (AA), osteosarcoma tumor density, mass, and the shape of the tumor on absorbed dose (AD). We also studied the biologic implication of the nonuniform tumor AD distribution using radiobiologic modeling and examined the relationship between tumor AD and response. Nineteen tumors in 6 patients with recurrent, refractory osteosarcoma enrolled in a phase I or II clinical trial of (153)Sm-EDTMP were analyzed using the 3-dimensional radiobiologic dosimetry (3D-RD) software package. Patients received a low dose of (153)Sm-EDTMP (37.0-51.8 MBq/kg), followed on hematologic recovery by a second, high dose (222 MBq/kg). Treatment response was evaluated using either CT or MRI after each therapy. SPECT/CT of the tumor regions were obtained at 4 and 48 h or 72 h after (153)Sm-EDTMP therapy for 3D-RD analysis. Mean tumor AD was also calculated using the OLINDA/EXM unit-density sphere model and was compared with the 3D-RD estimates. On average, a 5-fold increase in the AA led to a 4-fold increase in the mean tumor AD over the high- versus low-dose-treated patients. The range of mean tumor AD and equivalent uniform dose (EUD) for low-dose therapy were 1.48-14.6 and 0.98-3.90 Gy, respectively. Corresponding values for high-dose therapy were 2.93-59.3 and 1.89-12.3 Gy, respectively. Mean tumor AD estimates obtained from OLINDA/EXM were within 5% of the mean AD values obtained using 3D-RD. On an individual tumor basis, both mean AD and EUD were positively related to percentage tumor volume reduction (P = 0.031 and 0.023, respectively). The variations in tumor density, mass, and shape seen in these tumors did not affect the mean tumor AD estimation significantly. The tumor EUD was approximately 2- and 3-fold lower than the mean AD for low- and high-dose therapy, respectively. A dose-response relationship was observed for transient tumor volume shrinkage.
    Journal of Nuclear Medicine 02/2012; 53(2):215-24. · 5.77 Impact Factor

Publication Stats

4k Citations
857.39 Total Impact Points

Institutions

  • 2004–2014
    • Johns Hopkins University
      • • Department of Medicine
      • • Department of Radiology
      • • Division of Nuclear Medicine
      Baltimore, Maryland, United States
    • Case Western Reserve University
      • Department of Radiation Oncology (University Hospitals Case Medical Center)
      Cleveland, OH, United States
  • 2013
    • International Atomic Energy Agency (IAEA)
      • Section of Dosimetry and Medical Radiation Physics (DMRP)
      Wien, Vienna, Austria
    • IEO - Istituto Europeo di Oncologia
      • Division of Nuclear Medicine
      Milano, Lombardy, Italy
    • Duke University Medical Center
      • Department of Radiology
      Durham, North Carolina, United States
  • 2012
    • University Hospital of Lausanne
      Lausanne, Vaud, Switzerland
  • 2004–2011
    • Johns Hopkins Medicine
      • Department of Radiology and Radiological Science
      Baltimore, Maryland, United States
  • 2010
    • University of Lausanne
      Lausanne, Vaud, Switzerland
    • Polytechnic Institute of New York University
      Brooklyn, New York, United States
  • 2003–2009
    • University of Florida
      • Department of Nuclear and Radiological Engineering
      Gainesville, FL, United States
  • 2008
    • Case Western Reserve University School of Medicine
      Cleveland, Ohio, United States
  • 1993–2007
    • Memorial Sloan-Kettering Cancer Center
      • • Division of Molecular Pharmacology & Chemistry
      • • Department of Medical Physics
      • • Department of Medicine
      • • Department of Pharmacology
      New York City, NY, United States
  • 2004–2005
    • Imperial College London
      Londinium, England, United Kingdom
  • 2001–2005
    • University Hospital of Ioannina
      Yannina, Epirus, Greece
  • 2002
    • Ludwig Institute for Cancer Research
      La Jolla, California, United States
    • Philipps-Universität Marburg
      • Klinik für Strahlendiagnostik (Marburg)
      Marburg, Hesse, Germany
  • 1998–2000
    • Universitätsmedizin Göttingen
      • Division of Nuclear Medicine
      Göttingen, Lower Saxony, Germany