Guangmei Yan

Sun Yat-Sen University, Shengcheng, Guangdong, China

Are you Guangmei Yan?

Claim your profile

Publications (48)208.75 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are one of the most common types of malignant tumors worldwide, however, an effective therapeutic strategy not yet been fully determined. The present study aimed to investigate the anti-glioma activity and underlying mechanisms of pregnenolone, which originates from cholesterol and is metabolized into important steroid hormones in the body. The results demonstrated that 100 μM pregnenolone induced a significant loss of cell viability in various malignant glioma cell lines. In the U-87 MG, LN-18 and C6 cell lines, the loss of cell viability resulted from cell apoptosis, which was evidenced by apoptotic nuclear morphology changes and caspase 3 activation. Moreover, the increased activities of caspase 8 and 9 strongly indicated that pregnenolone activated the extrinsic and intrinsic pathways of apoptosis. Additionally, glioma cell apoptosis was prevented by the general caspase inhibitor, Z-VAD-FMK. In the C6 cells, upregulation of Fas and Fas ligand triggered the activation of the extrinsic pathway, whereas knockdown of Fas significantly abrogated the cell apoptosis that was induced by pregnenolone. Furthermore, downregulation of the anti-apoptotic protein, B-cell lymphoma 2 and upregulation of pro-apoptotic proteins, such as Bax and Bak, activated the intrinsic pathway. In conclusion, pregnenolone induced glioma cell apoptosis in a caspase-dependent manner, which was mediated by activation of the extrinsic and intrinsic apoptotic pathways.
    Oncology letters 08/2014; 8(2):645-650. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AKR1B10 is a member of human aldo-keto reductase superfamily, and a promising anti-cancer therapeutic target. In this paper, androst-3β-ol, dehydroepiandrosterone, pregnenolone and cholesterol were used as reactants, sixteen products were obtained through Jones reaction and reduction reaction using NaBH4. Their inhibitory activities against AKR1B10 and AKR1B1 were measured. The most active compound (3a) has the IC50 of 0.50 μM for AKR1B10, and the most AKR1B10 selective compound (2a) has the IC50 of 0.81 μM with AKR1B1/AKR1B10 selectivity of 195. In addition, the binding models of 2a and 3a in the active site of human AKR1B10 were identified by docking.
    Steroids 04/2014; · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The biotoxin cholera toxin has been demonstrated to have anti‑tumor activity in numerous types of cancer, including glioma. However, the role of cholera toxin in the tumorigenesis of transitional cell carcinoma (TCC), the most common malignant tumor of the bladder, remains to be elucidated. To address this, in the present study, two TCC cell lines, T24 and UM‑UC‑3, were treated with cholera toxin [protein kinase A (PKA) activator] and KT5720 (PKA inhibitor). Cell survival and proliferation, cell cycle alterations and apoptosis were analyzed using Hoechst staining, the MTT assay, fluorescence microscopy and flow cytometry. Western blot analysis was used to detect the expression of proteins involved in cell cycle regulation. The results revealed that cholera toxin significantly induced G1 arrest and downregulated the expression of cyclin D1 and cyclin‑dependent kinase 4/6 in the TCC cell lines, and this was rescued by KT5720. Furthermore, it was demonstrated that cholera toxin downregulated the activation of the c‑Raf/Mek/Erk cascade, an important mediator of tumor cell proliferation, via the PKA‑dependent c‑Raf phosphorylation at Ser‑43. Furthermore, inhibition of Mek activity with UO126 mimicked the effects of cholera toxin. In conclusion, these results confirmed that cholera toxin specifically inhibited proliferation and induced G1 phase arrest in human bladder TCC cells. This effect was due to PKA‑dependent inactivation of the c‑Raf/Mek/Erk pathway. This suggested that cholera toxin may be a viable therapeutic treatment against tumorigenesis and proliferation in bladder cancer.
    Molecular Medicine Reports 03/2014; · 1.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AKR1B10 is a member of human aldo-keto reductase superfamily, and a promising anti-cancer therapeutic target. In this paper, androst-3β-ol, dehydroepiandrosterone, pregnenolone and cholesterol were used as reactants, sixteen products were obtained through Jones reaction and reduction reaction using NaBH4. Their inhibitory activities against AKR1B10 and AKR1B1 were measured. The most active compound (3a) has the IC50 of 0.50 μM for AKR1B10, and the most AKR1B10 selective compound (2a) has the IC50 of 0.81 μM with AKR1B1/AKR1B10 selectivity of 195. In addition, the binding models of 2a and 3a in the active site of human AKR1B10 were identified by docking.
    Steroids 01/2014; · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the notorious reputation of the vicious invasion, the bladder cancer is the most common malignant tumor of the urinary system. Inhibiting invasion through microtubule dynamics interruption has emerged as an important treatment of bladder cancer. Here we investigated the role of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway in human bladder cancer cells invasion. With or without the treatment of various cAMP elevators, we assessed invasive and migrated capabilities of T24 and UM-UC-3, two high-grade invasive bladder cancer cell lines, using matrigel transwell inserts assay and scratch wound healing assay. The microtubule (MT) dynamics were examined by immunofluorescence and immunoblotting. Microtubule-Associated Protein 4 (MAP4) was silenced to investigate its role in tumor invasion. We also analyzed gene expression of MAP4 in 34 patients with bladder cancer using immunohistochemical staining assay. The interaction between PKA and MAP4 was examined by co-immunoprecipitation. We used cAMP elevators and small interfering RNA of MAP4 here, found that both of them can potently inhibit the invasion and the migration of bladder cancer cells by disrupting microtubule (MT) cytoskeleton. Consistently, the bladder cancer grade is positively correlated with the protein level of MAP4. Furthermore, we found that cAMP/PKA signaling can disrupt MT cytoskeleton by the phosphorylation of MAP4. Our results indicated that the cAMP/PKA signaling pathway might inhibit bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics, which could be exploited for the therapy of invasive bladder cancer.
    Urologic Oncology 10/2013; · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant gliomas are the most devastating and aggressive brain tumors affecting the central nervous system. The insidious growth and infiltration are the most prominent characteristics of malignant gliomas, which render the current therapies for malignant gliomas including surgery, radiation and chemotherapy unsuccessful. Inhibition of infiltration as well as proliferation in combination with surgery might be more effective in the treatment of malignant gliomas. In the current study, we demonstrate the alphaxalone (3-hydroxypregnane-11,20-dione) could effectively inhibit the proliferation of C6 glioma cells in a concentration dependent manner. Moreover, this compound could also suppress the migration and invasion of C6 glioma cells at a concentration without causing significant cytotoxicity. Except the in vitro anti-glioma activity, alphaxalone effectively delayed the growth of rat C6 malignant glioma xenografts in vivo. Together, these findings suggest alphaxalone might be a promising candidate for the treatment of malignant gliomas and may also provide helpful clues for anti-glioma drugs development in future.
    Steroids 07/2013; · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic stroke is a leading cause of death worldwide, yet therapies are limited. During periods of ischemia following reperfusion in ischemic stroke, not only loss of energy supply, but a few other factors including mitochondrial dysfunction and oxidative stress also make vital contribution to neuronal injury. Here we synthesized a steroid compound 5α-androst-3β,5,6β-triol by 3 steps starting from dehydroepiandrosterone and examined its effect on mitochondrial function and oxidative stress in primary cultured cortical neurons exposed to hypoxia followed by reoxygenation. 5α-Androst-3β,5,6β-triol dose-dependently protected cortical neurons from hypoxia/reoxygenation exposure. Rates of reduction in neuronal viability, loss of mitochondrial membrane potential, disruption of ATP production and oxidative stress were ameliorated in 5α-androst-3β,5,6β-triol pretreated cultures. In summary, these results suggest that 5α-androst-3β,5,6β-triol is neuroprotective against hypoxia/reoxygenation induced neuronal injuries through mediation of mitochondrial function and oxidative stress.
    Steroids 06/2013; · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:: Glioblastoma (GBM), the most common primary brain tumor, is the most aggressive malignancy in humans. Its rapid proliferation is a major obstacle to successful treatment. Patients with GBM often suffer from psychological disturbances associated with poor prognosis and physical discomfort. Diazepam is one of the most frequently used benzodiazepines (BZs) in cancer patients for its desirable psychotropic effects. The central effects of BZs are mediated by the activation of central BZ receptors. This study investigates whether diazepam has inhibitory effect on proliferation of GBM cell line T98G and explores its possible mechanism. METHODS:: Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay. Cell cycle distribution was examined by flow cytometry. Western blot with specific protein antibodies was used to detect regulatory proteins involved in cell cycle regulation. RESULTS:: Diazepam significantly decreased the proliferation of T98G cells in a dose-dependent and time-dependent manner. This effect was not reversed by the central BZ receptor antagonist flumazenil or the peripheral BZ receptor antagonist PK11195, indicating that it was not mediated by BZ receptors. Flow cytometry indicated that diazepam caused a cell accumulation in G0/G1 phase, thereby contributing to cell proliferation inhibition. Furthermore, our findings showed that lessened phosphorylation of Rb accounted for diazepam-induced G0/G1 phase arrest. CONCLUSION:: Diazepam inhibits the proliferation of human GBM T98G cells by inducing G0/G1 phase arrest. Diazepam has potential to be a lead for new drugs in GBM therapy because of its antitumor activity.
    Journal of neurosurgical anesthesiology 03/2013; · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential melastatin 7 (TRPM7), a Ca(2+)-permeable channel, has been demonstrated to be present in cancer cells and involved in their growth and proliferation. The present study used midazolam, a benzodiazepine class anesthesic, to pharmacologically intervene in the expression of TRPM7 and to inhibit cancer cell proliferation. Midazolam significantly inhibited the growth and proliferation of FaDu human hypopharyngeal squamous cell carcinoma cells, concurring with the induction of G(0)/G(1) cell cycle arrest and blockage of Rb activation. Central-type and peripheral-type benzodiazepine receptor antagonists did not abrogate proliferation inhibition by midazolam, while the specific TRPM7 agonist bradykinin reversed this effect. In addition, other benzodiazepines, diazepam and clonazepam also exhibited anti-proliferative activities. The inhibitory activity on cancer cell growth and proliferation, combined with the TRPM-dependent mechanism, reveals the anticancer potential of midazolam as a TRPM7 inhibitor and supports the suggestion that TRPM7 is a valuable target for pharmaceutical intervention.
    Oncology letters 03/2013; 5(3):1010-1016. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this research was to develop and evaluate high drug-loading ligand-modified nanomicelles to deliver a steroidal compound to the brain. YC1 (5α-cholestane-24-methylene-3β, 5α, 6β, 19-tetraol), with poor solubility and limited access to the brain, for the first time, has been proved to be an effective neuroprotective steroid by our previous studies. Based on the principle of 'like dissolves like', cholesterol, which shares the same steroidal parent nucleus with YC1, was selected to react with sodium alginate, producing amphiphilic sodium alginate- cholesterol derivatives (SACDs). To increase the grafting ratio and drug loading, cholesterol was converted to cholesteryl chloroformate, for the first time, before reacting with sodium alginate. Further, lactoferrin was conjugated on SACDs to provide lactoferrin-SACDs (Lf-SACD), which was established by immune electron microscopy (IEM) and self-assembled into brain-targeting nanomicelles. These nanomicelles were negatively charged and spherical in nature, with an average size of <200 nm. The YC1 drug loading was increased due to the cholesteryl inner cores of the nanomicelles, and the higher the grafting ratio was, the lower the critical micelle concentration (CMC) value of SACD, and the higher drug loading. The in vitro drug release, studied by bulk-equilibrium dialysis in 20 mL of 6% hydroxypropyl-β-cyclodextrin solution at 37°C, indicated a prolonged release profile. The YC1 concentration in mouse brain delivered by lactoferrin-modified nanomicelles was higher than in those delivered by non-modified nanomicelles and YC1 solution. The unique brain-targeting nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood-brain barrier for the treatment of brain diseases.
    International Journal of Nanomedicine 01/2013; 9:55-66. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluid shear stress plays an important role in bone osteogenic differentiation. It is traditionally believed that pulsed and continuous stress load is more favorable for fracture recovery and bone homeostasis. However, according to our clinical practice, we notice that one single stress load is also sufficient to trigger osteogenic differentiation. In the present study, we subject osteoblast MC3T3-E1 cells to single bout short duration fluid shear stress by using a parallel plate flow system. The results show that 1 hour of fluid shear stress at 12 dyn/cm(2) promotes terminal osteogenic differentiation, including rearrangement of F-actin stress fiber, up-regulation of osteogenic genes expression, elevation of alkaline phosphatase activity, secretion of type I collagen and osteoid nodule formation. Moreover, collaboration of BMP2 and integrin β1 pathways plays a significant role in such differentiation processes. Our findings provide further experimental evidence to support the notion that single bout short duration fluid shear stress can promote osteogenic differentiation.
    PLoS ONE 01/2013; 8(4):e61600. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor invasion and migration are major causes of mortality in patients with cervical carcinoma. Tumors under hypoxic conditions are more invasive and have a higher metastasic activity. Lysyl oxidase (LOX) is a hypoxia-responsive gene. LOX has been shown to be essential for hypoxia-induced metastasis in breast cancer. However, the direct impact of LOX on cervical cancer cell motility remains poorly understood. Our study revealed that LOX expression at protein and catalytic levels is upregulated in cervical cancer cells upon exposure to hypoxia. Hypoxia induced mesenchymal-like morphological changes in HeLa and SiHa cells which were accompanied by upregulation of α-SMA and vimentin, two mesenchymal markers, and downregulation of E-cadherin, an epithelial marker, indicating the epithelial-mesenchymal transition (EMT) of cervical cancer cells occurred under hypoxic conditions. Treatment of tumor cells with β-aminopropionitrile (BAPN), an active site inhibitor of LOX, blocked the hypoxia-induced EMT morphological and marker protein changes, and inhibited invasion and migration capacities of cervical carcinoma cells in vitro. Collectively, these findings suggest LOX enhances hypoxia-induced invasion and migration in cervical cancer cells mediated by the EMT which can be inhibited by BAPN.
    Oncology Reports 11/2012; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aim to pharmacologically downregulate heat shock protein 27 (HSP27) through triptolide (TPL) to improve the drug sensitivity of pancreatic cancer to cisplatin (DDP). In vitro, we assessed cell viability and apoptosis by the combination of TPL and DDP in gemcitabine-resistant human pancreatic carcinoma PANC-1 and MIA PaCa-2 cell lines and examined the effect of silencing HSP27 by a small interfering RNA on cytotoxicity induced by TPL or DDP. In vivo, we apply TPL with DDP in a xenograft model to test the synergic action. Triptolide cooperates with DDP to decrease cell viability and to induce apoptosis via the mitochondrial pathway, which is accompanied by a sharp decline in HSP27. Knocking down endogenous HSP27 can sensitize cancer cells to cytotoxicity with TPL or DDP, indicating the critical role of HSP27 down-regulation in the synergic effect. Meanwhile, TPL acts in synergy with DDP to cause tumor regression in vivo. The combined therapy of TPL and DDP triggers a synergic apoptosis via inhibiting HSP27 in human gemcitabine-resistant pancreatic carcinoma and has a strong potential to be developed into a new effective regimen for pancreatic cancer treatment.
    Pancreas 05/2012; 41(7):1029-38. · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant glioma is the most devastating and aggressive tumor in brain, characterized by rapid proliferation and diffuse invasion. Chemotherapy and radiotherapy are the pivotal strategies after surgery; however, high drug resistance of malignant glioma and the blood-brain barrier usually render chemotherapy drugs ineffective. Here, we find that triptolide, a small molecule with high lipid solubility, is capable of inhibiting proliferation and invasion of malignant glioma cells effectively. In both investigated malignant glioma cell lines, triptolide repressed cell proliferation via inducing cell cycle arrest in G0/G1 phase, associated with downregulation of G0/G1 cell cycle regulators cyclin D1, CDK4, and CDK6 followed by reduced phosphorylation of retinoblastoma protein (Rb). In addition, triptolide induced morphological change of C6 cells through downregulation of protein expression of MAP-2 and inhibition of activities of GTPases Cdc42 and Rac1/2/3, thus significantly suppressing migratory and invasive capacity. Moreover, in an in vivo tumor model, triptolide delayed growth of malignant glioma xenografts. These findings suggest an important inhibitory action of triptolide on proliferation and invasion of malignant glioma, and encourage triptolide as a candidate for glioma therapy.
    Journal of Neuro-Oncology 05/2012; 109(1):53-62. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioma is the most common malignant cancer affecting the central nerve system, with dismal prognosis. Differentiation-inducing therapy is a novel strategy that has been preliminarily proved effective against malignant glioma. We have reported previously that activation of cAMP/protein kinase A (PKA) pathway is capable of inducing glioma cell differentiation, characterized by astrocyte-like shape and dramatic induction of astrocyte biomarker glial fibrillary acidic protein (GFAP). However, little progress has been made on molecular mechanisms related. Here we demonstrate that microRNA 335 (miR-335) is responsible for the glioma cell differentiation stimulated by activation of cAMP/PKA pathway. In the cAMP elevator cholera toxin-induced differentiation model of rat C6 glioma cells, miR-335 was significantly up-regulated, which was mimicked by other typical cAMP/PKA pathway activators (e.g., forskolin, dibutyryl-cAMP) and abolished by PKA-specific inhibitor (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT5720). In an assay measuring gain and loss of miR-335 function, exogenetic miR-335 resulted in induction of GFAP, whereas miR-335 specific inhibitor antagomir-335 violently blocked cholera toxin-induced GFAP up-regulation. It is noteworthy that in human U87-MG glioma cells and human primary culture glioma cells, miR-335 also mediated cholera toxin-induced differentiation. Taken together, our findings suggest that miR-335 is potently required for differentiation of malignant glioma cells induced by cAMP/PKA pathway activation, and a single microRNA may act as an important fate determinant to control the differentiation status of malignant gliomas, which has provided a new insight into differentiation-inducing therapy against malignant gliomas.
    Molecular pharmacology 12/2011; 81(3):292-8. · 4.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioma is the most common and fatal primary brain tumor. Thus far, therapeutic strategies to efficiently and specifically antagonize glioma are limited and poorly developed. Here we report that glia-enriched miR-135a, a microRNA that is dramatically downregulated in malignant glioma and correlated with the pathological grading, is capable of inducing mitochondria-dependent apoptosis of malignant glioma by regulating various genes including STAT6, SMAD5 and BMPR2, as well as affecting the signaling pathway downstream. Moreover, this lethal effect is selectively towards malignant glioma cells, but not neurons and glial cells, through a novel mechanism. Our findings suggest an important role of miR-135a in glioma etiology and provide a potential candidate for malignant glioma therapy.
    Oncogene 12/2011; 31(34):3866-74. · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies.
    Nature Biotechnology 11/2011; 29(11):1019-23. · 32.44 Impact Factor
  • Source
    Wenbo Zhu, Guangmei Yan
    08/2011; , ISBN: 978-953-307-588-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytomas are the most common and aggressive brain tumors characterized by their highly invasive growth. Gain of chromosome 7 with a hot spot at 7q32 appears to be the most prominent aberration in astrocytoma. Previously reports have shown that microRNA-335 (miR-335) resided on chromosome 7q32 is deregulated in many cancers; however, the biological function of miR-335 in astrocytoma has yet to be elucidated. We report that miR-335 acts as a tumor promoter in conferring tumorigenic features such as growth and invasion on malignant astrocytoma. The miR-335 level is highly elevated in C6 astrocytoma cells and human malignant astrocytomas. Ectopic expression of miR-335 in C6 cells dramatically enhances cell viability, colony-forming ability and invasiveness. Conversely, delivery of antagonist specific for miR-335 (antagomir-335) to C6 cells results in growth arrest, cell apoptosis, invasion repression and marked regression of astrocytoma xenografts. Further investigation reveals that miR-335 targets disheveled-associated activator of morphogenesis 1(Daam1) at posttranscriptional level. Moreover, silencing of endogenous Daam1 (siDaam1) could mimic the oncogenic effects of miR-335 and reverse the growth arrest, proapoptotic and invasion repression effects induced by antagomir-335. Notably, the oncogenic effects of miR-335 and siDAAM1 together with anti-tumor effects of antagomir-335 are also confirmed in human astrocytoma U87-MG cells. These findings suggest an oncogenic role of miR-335 and shed new lights on the therapy of malignant astrocytomas by targeting miR-335.
    Molecular Cancer 05/2011; 10:59. · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy.
    Journal of Cellular Biochemistry 04/2011; 112(9):2241-9. · 3.06 Impact Factor

Publication Stats

344 Citations
208.75 Total Impact Points

Institutions

  • 2002–2014
    • Sun Yat-Sen University
      • Zhongshan School of Medicine
      Shengcheng, Guangdong, China
  • 2013
    • State University of New York Downstate Medical Center
      Brooklyn, New York, United States
  • 2005–2013
    • Sun Yat-Sen University of Medical Sciences
      • Department of Pharmacology
      中山, Guangdong, China
  • 2011
    • South China Center for Innovative Pharmaceuticals
      Shengcheng, Guangdong, China
  • 2006
    • Tsinghua University
      • Laboratory of Structural Biology
      Beijing, Beijing Shi, China
    • Zhejiang University
      Hang-hsien, Zhejiang Sheng, China