Sumitra Deb

National Institute on Aging, Baltimore, MD, United States

Are you Sumitra Deb?

Claim your profile

Publications (26)89.28 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gain-of-function mutant p53 is thought to induce gene expression in part by binding transcription factors bound to promoters for genes that mediate oncogenesis. We investigated the mechanism of mutant p53 binding by mapping the human genomic binding sites for p53 R273H using ChIP-Seq and showed them to localize to ETS DNA sequence motifs and locations with ETS1 and GABPA binding, both within promoters and distal to promoters. Strikingly, p53 R273H showed statistically significant and substantial binding to bidirectional promoters, which are enriched for inverted repeated ETS DNA sequence motifs. p53 R273H exhibited an exponential increase in probability of binding promoters with a higher number of ETS motifs. Both ETS1 and GABPA also showed an increase in the probability of binding to promoters with a higher number of ETS motifs. However, despite this increase in probability of binding by p53 R273H and ETS1, there was no increase in the binding signal, suggesting that the number of ETS1 and p53 R273H proteins bound per promoter is being limited. In contrast, GABPA did exhibit an increase in binding signal with higher numbers of ETS motifs per promoter. Analysis of the distance between inverted pairs of ETS motifs within promoters and binding by p53 R273H, ETS1 and GABPA, showed a novel coordination of binding for the three proteins. Both ETS1 and p53 R273H exhibited preference for binding promoters with distantly spaced ETS motifs in face-to-face and back-to-back orientations, and low binding preference to promoters with closely spaced ETS motifs. GABPA exhibited the inverse pattern of binding by preferring to bind promoters with closely spaced ETS motifs. Analysis of the helical phase between ETS motifs showed that ETS1 and p53 R273H exhibited a low preference for binding promoters with ETS motifs on the same face of the DNA helix. We propose a model for the binding of ETS1 and p53 R273H in which two inverted ETS motifs on a looped DNA helix are juxtaposed for ETS1 binding as a homodimer, with p53 R273H bound to ETS1. We propose that the formation of this DNA loop and protein-bound complex prevents additional binding of ETS1 and p53 R273H proteins to other proximal binding sites.
    Oncotarget 01/2014; · 6.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frequent overexpression of MDM2 in human cancers suggests that the protein confers a survival advantage to cancer cells. However, overexpression of MDM2 in normal cells seems to restrict cell proliferation. This review discusses the cell growth regulatory functions of MDM2 in normal and genetically defective cells to assess how cancer cells evade the growth-restricting consequence of MDM2 overexpression. Similar to oncoproteins that induce a DNA damage response and oncogene induced senescence in non-transformed cells, MDM2 induces G1-arrest and intra-S phase checkpoint responses that control untimely DNA replication in the face of genetic challenges.
    Sub-cellular biochemistry 01/2014; 85:215-234.
  • [Show abstract] [Hide abstract]
    ABSTRACT: p53 is a tumor suppressor protein whose key function is to maintain the integrity of the cell. Mutations in p53 have been found in up to 50 % of all human cancers and cause an increase in oncogenic phenotypes such as proliferation and tumorigenicity. Both wild-type and mutant p53 have been shown to transactivate their target genes, either through directly binding to DNA, or indirectly through protein-protein interactions. This review discusses possible mechanisms behind both wild-type and mutant p53-mediated transactivation and touches on the concept of addiction to mutant p53 of cancer cells and how that may be used for future therapies.
    Sub-cellular biochemistry 01/2014; 85:71-90.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past few decades, advances in cancer research have enabled us to understand the different mechanisms that contribute to the aberrant proliferation of normal cells into abnormal cells that result in tumors. In the pursuit to find cures, researchers have primarily focused on various molecular level changes that are unique to cancerous cells. In humans, about 50 % or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Despite the identification of numerous triggers that causes lung cancer specific cure still remain elusive. One of the primary reasons attributed to this is due to the fact that the tumor tissue is heterogeneous and contains numerous sub-populations of cells. Studies have shown that a specific sub-population of cells termed as cancer stem cells (CSCs) drive the recurrence of cancer in response to standard chemotherapy. These CSCs are mutated cells with core properties similar to those of adult stem cells. They reside in a microenvironment within the tumor tissue that supports their growth and make them less susceptible to drug treatment. These cells possess properties of symmetric self-renewal and migration thus driving tumor formation and metastasis. Therefore, research specifically targeting these cells has gained prominence towards developing new therapeutic agents against cancer. This chapter focuses on lung cancer stem cells, p53 mutations noted in these cells, and importance of MDM2 interactions. Further, research approaches for better understanding of molecular mechanisms that drive CSC function and developing appropriate therapies are discussed.
    Sub-cellular biochemistry 01/2014; 85:359-370.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conventional paradigm ascribes the cell proliferative function of the human oncoprotein mouse double minute2 (MDM2) primarily to its ability to degrade p53. Here we report that in the absence of p53, MDM2 induces replication stress eliciting an early S-phase checkpoint response to inhibit further firing of DNA replication origins. Partially synchronized lung cells cultured from p53-/-:MDM2 transgenic mice enter S phase and induce S-phase checkpoint response earlier than lung cells from p53-/- mice and inhibit firing of DNA replication origins. MDM2 activates chk1 phosphorylation, elevates mixed lineage lymphoma histone methyl transferase levels and promotes checkpoint-dependent tri-methylation of histone H3 at lysine 4, known to prevent firing of late replication origins at the early S phase. In the absence of p53, a condition that disables inhibition of cyclin A expression by MDM2, MDM2 increases expression of cyclin D2 and A and hastens S-phase entry of cells. Consistently, inhibition of cyclin-dependent kinases, known to activate DNA replication origins during firing, inhibits MDM2-mediated induction of chk1 phosphorylation indicating the requirement of this activity in MDM2-mediated chk1 phosphorylation. Our data reveal a novel pathway, defended by the intra-S-phase checkpoint, by which MDM2 induces unscheduled origin firing and accelerates S-phase entry of cells in the absence of p53.
    Nucleic Acids Research 10/2013; · 8.81 Impact Factor
  • Sumitra Deb, Paul R Graves
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interaction studies can provide valuable insight into protein function. One of the most practical and high-yielding approaches is immunoprecipitation of a bait protein followed by mass spectrometry to identify co-precipitating proteins. Here we describe an effective and simplified version of this method that can be performed in most laboratories using standard laboratory equipment (apart from the mass spectrometer). We further demonstrate the utility of this method to identify proteins that specifically interact with mutant forms of the tumor suppressor protein, p53.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 962:85-94. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to study the functions of a cell's endogenous mutant p53, the p53 protein levels must be knocked-down. Transient transfection of small interfering RNAs is one way to accomplish this. Another is the stable expression of short hairpin RNAs. This chapter presents a method by which a short hairpin RNA (shRNA) targeting p53 is inserted into the genome of a cell via lentivirus infection. These p53 knock-down cell lines are stable and may be grown long term for use in a wide range of applications.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 962:193-199. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemoresistance and increased growth rate are two gain-of-function functions that mutant p53 is thought to possess. Here, we describe two methods for measuring the sensitiveness of cells to chemotherapeutic drugs and the rate of cell growth. Both of which can be used with a wide range of cell types. The clonogenic assay can be used with many different chemotoxic drugs and the growth assay described here presents an alternative to the MTT assay and allows for a long-term measurement of cell growth. These protocols are both easy, flexible, require relatively little effort, and are inexpensive to carry out.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 962:127-133. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 962:135-146. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA replication involves a coordinated progression through S phase, and disruption of these regulated steps may cause gene abnormalities, which may lead to cancer. Different stages of DNA replication can be detected immunofluorescently that would indicate how replication is progressing in a cell population or under specific conditions. We describe a method for labeling replicating DNA with two nucleotide analogs, and then detecting the sequential patterns of incorporation using fluorescently labeled antibodies on DNA spread onto a glass slide. Quantification of the different types of replication patterns produced by this method reveals how replication is achieved under different conditions by the predominance and lengths of elongating replication forks progressing from single or clustered origins, as well as the sites of termination from two converging forks.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 962:147-155. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutant p53 may activate target genes through the interaction of transcription factors or through histone modifications. Chromatin immunoprecipitation (ChIP) is a method commonly used to study these types of protein interactions. In order to generate a list of target genes that may be activated through this mechanism, ChIP sequencing may be used. ChIP sequencing involves the mass parallel sequencing of ChIP DNA fragments. We describe a method by which to prepare chromatin immunoprecipitation sequencing libraries and how to analyze sequencing data. In this procedure, prepared libraries have been sent to a core facility. The results have been verified using quantitative PCR.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 962:227-236. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with "gain of function" (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437 carrying endogenous mutants p53-P278S and -R267P, both show reduction in growth rate on knock-down on p53 levels. However, whereas reduction of the p53 level induces loss of tumorigenicity in nude mice for ABC1 cells, it escalates tumorigenicity for H1437 cells. We have tested their transactivation potential on p53 target gene promoters by performing transient transcriptional assays in the p53-null H1299 lung cancer cell line. Interestingly, while the mutant p53 target promoter Axl was activated by both the mutants, the p21 promoter was activated by p53-R267P and wild-type p53 but not by p53-P278S; showing a clear difference in transcriptional activity between the two mutants. Our result demonstrates allele specificity between GOF p53 mutants and attempt to show that the specificity is dependent on the transactivation property of GOF p53; it also suggests importance of p21 activation in tumor suppression by p53.
    Biochemical and Biophysical Research Communications 09/2012; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: p53 mutations are present in up to 70% of lung cancer. Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 or no p53. Expression of tumor-derived mutant p53 in cells leads to up-regulated expression of genes that may affect cell growth and oncogenesis. In our study of this aggressive phenotype, we have investigated the receptor protein tyrosine kinase Axl, which is up-regulated by p53 mutants at both RNA and protein levels in H1299 lung cancer cells expressing mutants p53-R175H, -R273H, and -D281G. Knockdown of endogenous mutant p53 levels in human lung cancer cells H1048 (p53-R273C) and H1437 (p53-R267P) led to a reduction in the level of Axl as well. This effect on Axl expression is refractory to the mutations at positions 22 and 23 of p53, suggesting that p53's transactivation domain may not play a critical role in the up-regulation of Axl gene expression. Chromatin immunoprecipitation (ChIP) assays carried out with acetylated histone antibodies demonstrated induced histone acetylation on the Axl promoter region by mutant p53. Direct mutant p53 nucleation on the Axl promoter was demonstrated by ChIP assays using antibodies against p53. The Axl promoter has a p53/p63 binding site, which however is not required for mutant p53-mediated transactivation. Knockdown of Axl by Axl-specific RNAi caused a reduction of gain-of-function (GOF) activities, reducing the cell growth rate and motility rate in lung cancer cells expressing mutant p53. This indicates that for lung cancer cell lines with mutant p53, GOF activities are mediated in part through Axl.
    Genes & cancer 07/2012; 3(7-8):491-502.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 and show "gain of function" (GOF) phenotypes such as increased growth rate, enhanced resistance to chemotherapeutic drugs, increased cell motility and tumorigenicity; although the mechanism for this function remains unknown. In this communication we report that p53-mediated NF-κB2 up-regulation significantly contributes to the aggressive oncogenic behavior of cancer cells. Lowering the level of mutant p53 in a number of cancer cell lines resulted in a loss of GOF phenotypes directly implicating p53 mutants in the process. RNAi against NF-κB2 in naturally occurring cancer cell lines also lowers GOF activities. In H1299 cells expressing mutant p53, chromatin immunoprecipitation (ChIP) assays indicate that mutant p53 induces histone acetylation at specific sites on the regulatory regions of its target genes. ChIP assays using antibodies against transcription factors putatively capable of interacting with the NF-κB2 promoter show increased interaction of CBP and STAT2 in the presence of mutant p53. Thus, we propose that in H1299 cells, mutant p53 elevates expression of genes capable of enhancing cell proliferation, motility, and tumorigenicity by inducing acetylation of histones via recruitment of CBP and STAT2 on the promoters causing CBP-mediated histone acetylation.
    Archives of Biochemistry and Biophysics 12/2011; 518(1):79-88. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of dominant transforming p53 in carcinogenesis is poorly understood. Our previous data suggested that aberrant p53 proteins can enhance tumorigenesis and metastasis. Here, we examined potential mechanisms through which gain-of-function (GOF) p53 proteins can induce motility. Cells expressing GOF p53 -R175H, -R273H and -D281G showed enhanced migration, which was reversed by RNA interference (RNAi) or transactivation-deficient mutants. In cells with engineered or endogenous p53 mutants, enhanced migration was reduced by downregulation of nuclear factor-kappaB2, a GOF p53 target. We found that GOF p53 proteins upregulate CXC-chemokine expression, the inflammatory mediators that contribute to multiple aspects of tumorigenesis. Elevated expression of CXCL5, CXCL8 and CXCL12 was found in cells expressing oncogenic p53. Transcription was elevated as CXCL5 and CXCL8 promoter activity was higher in cells expressing GOF p53, whereas wild-type p53 repressed promoter activity. Chromatin immunoprecipitation assays revealed enhanced presence of acetylated histone H3 on the CXCL5 promoter in H1299/R273H cells, in agreement with increased transcriptional activity of the promoter, whereas RNAi-mediated repression of CXCL5 inhibited cell migration. Consistent with this, knockdown of the endogenous mutant p53 in lung cancer or melanoma cells reduced CXCL5 expression and cell migration. Furthermore, short hairpin RNA knockdown of mutant p53 in MDA-MB-231 cells reduced expression of a number of key targets, including several chemokines and other inflammatory mediators. Finally, CXCL5 expression was also elevated in lung tumor samples containing GOF p53, indicating relevance to human cancer. The data suggest a mechanistic link between GOF p53 proteins and chemokines in enhanced cell motility.
    Carcinogenesis 11/2011; 33(2):442-51. · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2-mediated NF-κB2 up-regulation is a combined effect of p53-dependent and independent mechanisms and that it confers a survival advantage to lung cancer cells.
    Genes & cancer 10/2011; 2(10):943-55.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 gene is one of the most frequently mutated genes in human cancer. Some p53 mutations impart additional functions that promote oncogenesis. To investigate how these p53 mutants function, a proteomic analysis was performed. The protein, translocator of the inner mitochondrial membrane 50 (Tim50), was upregulated in a non-small cell lung carcinoma cell line (H1299) that expressed the p53 mutants R175H and R273H compared to cells lacking p53. Tim50 was also elevated in the breast cancer cell lines MDA-MB-468 and SK-BR-3, that endogenously express the p53 mutants R175H and R273H, respectively, compared to MCF-10A. The p53 mutants R175H and R273H, but not WT p53, upregulated the expression of a Tim50 promoter construct and chromatin immunoprecipitation (ChIP) analysis indicated increased histone acetylation and increased interaction of the transcription factors Ets-1, CREB and CREB-binding protein (CBP) with the Tim50 promoter in the presence of mutant p53. Finally, reduction of Tim50 expression reduced the growth rate and chemoresistance of cells harboring mutant p53 but had no effect upon cells lacking p53. Taken together, these findings identify the Tim50 gene as a transcriptional target of mutant p53 and suggest a novel mechanism by which p53 mutants enhance cell growth and chemoresistance.
    Archives of Biochemistry and Biophysics 05/2011; 512(1):52-60. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of MDM2 has been related to oncogenesis. In this communication, we present evidence to show that MDM2 controls the cell cycle-dependent expression of cyclin A by using a pathway that ensures its timely expression. MDM2 does not inhibit cyclin D or E expression. Silencing of endogenous MDM2 expression elevates cyclin A expression. The p53-binding domain of MDM2 harbors a SWIB region homologous to a conserved domain of a chromosome remodeling factor BRG1-associated protein. The SWIB domain of MDM2 inhibits cyclin A expression in a p53- and BRG1-dependent fashion, suggesting that MDM2 interferes with p53 binding of the BRG1 complex freeing it to repress cyclin A expression. Silencing of cyclin-dependent kinase (cdk) inhibitor p16 prevents MDM2-mediated inhibition of cyclin A expression, implicating its role in the process. MDM2-mediated repression of cyclin A expression induces G(1)-S arrest, which can be rescued by ectopic expression of cyclin A. Cancer cells lacking p53, p16, or BRG1 escape MDM2-mediated repression of cyclin A expression and growth arrest. Our data propose a novel mechanism by which MDM2 controls the cell cycle in normal cells and how cancer cells may escape this important safety barrier.
    Molecular Cancer Research 09/2009; 7(8):1253-67. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the cellular functions of HDM2, we attempted to identify novel HDM2-interacting proteins by proteomic analysis. Along with previously identified interactions with the ribosomal proteins, our analysis reveals interactions of HDM2 with the ribosomal translation elongation factor EF1alpha, 40S ribosomal protein S20, tubulins, glyceraldehyde 3-phosphate dehydrogenase, and a proteolysis-inducing factor dermicidin in the absence of tumor suppressor p53. Because a CTCL tumor antigen HD-CL-08 has high degree of homology with EF1alpha, we confirmed interaction of HDM2 with EF1alpha by immunoprecipitation and Western blot analysis in transformed as well as near normal diploid cells. Endogenous HDM2- EF1alpha complex was detected in cancer cells overexpressing HDM2, suggesting a possible role of this interaction in HDM2-mediated oncogenesis. Consistent with their interaction, colocalization of HDM2 and EF1alpha can be detected in the cytoplasm of normal or transformed cells. Amino acid residues 1-58 and 221-325 of HDM2 were found to be essential for its interaction with EF1alpha, suggesting that the interaction is independent of its other ribosomal interacting proteins L5, L11, and L23. Overexpression of HDM2 did not affect translation. Because EF1alpha has been implicated in DNA replication and severing of microtubules, interaction of HDM2 with EF1alpha may signify a p53-independent cell growth regulatory role of HDM2.
    Journal of Proteome Research 05/2007; 6(4):1410-7. · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of mutant p53 is a common theme in tumors, suggesting a selective pressure for p53 mutation in cancer development and progression. To determine how mutant p53 expression may lead to survival advantage in human cancer cells, we generated stable cell lines expressing p53 mutants p53-R175H, -R273H, and -D281G by use of p53-null human H1299 (lung carcinoma) cells. Compared to vector-transfected cells, H1299 cells expressing mutant p53 showed a survival advantage when treated with etoposide, a common chemotherapeutic agent; however, cells expressing the transactivation-deficient triple mutant p53-D281G (L22Q/W23S) had significantly lower resistance to etoposide. Gene expression profiling of cells expressing transcriptionally active mutant p53 proteins revealed the striking pattern that all three p53 mutants induced expression of approximately 100 genes involved in cell growth, survival, and adhesion. The gene NF-kappaB2 is a prominent member of this group, whose overexpression in H1299 cells also leads to chemoresistance. Treatment of H1299 cells expressing p53-R175H with small interfering RNA specific for NF-kappaB2 made these cells more sensitive to etoposide. We have also observed activation of the NF-kappaB2 pathway in mutant p53-expressing cells. Thus, one possible pathway through which mutants of p53 may induce loss of drug sensitivity is via the NF-kappaB2 pathway.
    Molecular and Cellular Biology 12/2005; 25(22):10097-110. · 5.04 Impact Factor

Publication Stats

263 Citations
89.28 Total Impact Points

Institutions

  • 2013
    • National Institute on Aging
      • Laboratory of Molecular Gerontology (LMG)
      Baltimore, MD, United States
  • 2002–2013
    • Virginia Commonwealth University
      • • Department of Microbiology & Immunology
      • • Department of Biochemistry and Molecular Biology
      • • Department of Pharmacology and Toxicology
      Richmond, VA, United States