Mihaela Pertea

Johns Hopkins University, Baltimore, MD, United States

Are you Mihaela Pertea?

Claim your profile

Publications (42)673.34 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA sequencing has become a powerful method to discover the genetic basis of disease. Standard, widely-used protocols for analysis usually begin by comparing each individual to the human reference genome. When applied to a set of related individuals, this approach reveals millions of differences, most of which are shared among the individuals and unrelated to the disease being investigated. We have developed a novel algorithm for variant detection, one that compares DNA sequences directly to one another, without aligning them to the reference genome. When used to find de novo mutations in exome sequences from family trios, or to compare normal and diseased samples from the same individual, the new method, Diamund, produces a dramatically smaller list of candidate mutations than previous methods, without losing sensitivity to detect the true cause of a genetic disease. We demonstrate our results on several example cases, including two family trios in which it correctly found the disease-causing variant while excluding thousands of harmless variants that standard methods had identified. This article is protected by copyright. All rights reserved.
    Human Mutation 12/2013; · 5.21 Impact Factor
  • Source
    Mihaela Pertea
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent technological advances, the study of the human transcriptome is still in its early stages. Here we provide an overview of the complex human transcriptomic landscape, present the bioinformatics challenges posed by the vast quantities of transcriptomic data, and discuss some of the studies that have tried to determine how much of the human genome is transcribed. Recent evidence has suggested that more than 90% of the human genome is transcribed into RNA. However, this view has been strongly contested by groups of scientists who argued that many of the observed transcripts are simply the result of transcriptional noise. In this review, we conclude that the full extent of transcription remains an open question that will not be fully addressed until we decipher the complete range and biological diversity of the transcribed genomic sequences.
    Genes. 09/2012; 3(3):344-360.
  • Source
    Mihaela Pertea, Geo M Pertea, Steven L Salzberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Comparison of the human genome with other primates offers the opportunity to detect evolutionary events that created the diverse phenotypes among the primate species. Because the primate genomes are highly similar to one another, methods developed for analysis of more divergent species do not always detect signs of evolutionary selection. We have developed a new method, called DivE, specifically designed to find regions that have evolved either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have potentially undergone positive selection in one or more primate species. Most of these regions occur outside of protein-coding genes, although we identified 20 proteins that have experienced positive selection. DivE provides an easy-to-use method to predict both positive and negative selection in noncoding DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes.
    BMC Bioinformatics 01/2011; 12:274. · 3.02 Impact Factor
  • Source
    Steven L Salzberg, Mihaela Pertea
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a computational screen that tests an individual's genome for mutations in the BRCA genes, despite the fact that both are currently protected by patents.
    Genome biology 10/2010; 11(10):404. · 10.30 Impact Factor
  • Source
    Mihaela Pertea, Steven L Salzberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Many people expected the question 'How many genes in the human genome?' to be resolved with the publication of the genome sequence in 2001, but estimates continue to fluctuate.
    Genome biology 05/2010; 11(5):206. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
    Nature 08/2009; 460(7253):352-8. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in sequencing technologies have accelerated the sequencing of new genomes, far outpacing the generation of gene and protein resources needed to annotate them. Direct comparison and alignment of existing cDNA sequences from a related species is an effective and readily available means to determine genes in the new genomes. Current spliced alignment programs are inadequate for comparing sequences between different species, owing to their low sensitivity and splice junction accuracy. A new spliced alignment tool, sim4cc, overcomes problems in the earlier tools by incorporating three new features: universal spaced seeds, to increase sensitivity and allow comparisons between species at various evolutionary distances, and powerful splice signal models and evolutionarily-aware alignment techniques, to improve the accuracy of gene models. When tested on vertebrate comparisons at diverse evolutionary distances, sim4cc had significantly higher sensitivity compared to existing alignment programs, more than 10% higher than the closest competitor for some comparisons, while being comparable in speed to its predecessor, sim4. Sim4cc can be used in one-to-one or one-to-many comparisons of genomic and cDNA sequences, and can also be effectively incorporated into a high-throughput annotation engine, as demonstrated by the mapping of 64,000 Fagus grandifolia 454 ESTs and unigenes to the poplar genome.
    Nucleic Acids Research 06/2009; 37(11):e80. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fast pace of bacterial genome sequencing and the resulting dependence on highly automated annotation methods has driven the development of many genome-wide analysis tools. OperonDB, first released in 2001, is a database containing the results of a computational algorithm for locating operon structures in microbial genomes. OperonDB has grown from 34 genomes in its initial release to more than 500 genomes today. In addition to increasing the size of the database, we have re-designed our operon finding algorithm and improved its accuracy. The new database is updated regularly as additional genomes become available in public archives. OperonDB can be accessed at: http://operondb.cbcb.umd.edu.
    Nucleic Acids Research 11/2008; 37(Database issue):D479-82. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
    Genome biology 02/2008; 9(1):R7. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
    Science 10/2007; 317(5845):1756-60. · 31.20 Impact Factor
  • Mihaela Pertea, Steven L. Salzberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Protein domains are the common functional elements used by nature to generate tremendous diversity among proteins, and they are used repeatedly in different combinations across all major domains of life. In this paper we address the problem of using similarity to known protein domains in helping with the identification of genes in a DNA sequence. We have adapted the generalized hidden Markov model (GHMM) architecture of the ab intio gene finder GlimmerHMM such that a higher probability is assigned to exons that contain homologues to protein domains. To our knowledge, this domain homology based approach has not been used previously in the context of ab initio gene prediction. Results: GlimmerHMM was augmented with a protein domain module that recognizes gene structures that are similar to Pfam models. The augmented system, GlimmerHMM+, shows 2% improvement in sensitivity and a 1% increase in specificity in predicting exact gene structures compared to GlimmerHMM without this option. These results were obtained on two very different model organisms: Arabidopsis thaliana (mustard wee) and Danio rerio (zebrafish), and together these preliminary results demonstrate the value of using protein domain homology in gene prediction. The results obtained are encouraging, and we believe that a more comprehensive approach including a model that reflects the statistical characteristics of specific sets of protein domain families would result in a greater increase of the accuracy of gene prediction. GlimmerHMM and GlimmerHMM+ are freely available as open source software at http://cbcb.umd.edu/software.
    08/2007: pages 208-215;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
    Science 07/2007; 316(5832):1718-23. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
    Science 02/2007; 315(5809):207-12. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Algorithmic approaches to splice site prediction have relied mainly on the consensus patterns found at the boundaries between protein coding and non-coding regions. However exonic splicing enhancers have been shown to enhance the utilization of nearby splice sites. We have developed a new computational technique to identify significantly conserved motifs involved in splice site regulation. First, 84 putative exonic splicing enhancer hexamers are identified in Arabidopsis thaliana. Then a Gibbs sampling program called ELPH was used to locate conserved motifs represented by these hexamers in exonic regions near splice sites in confirmed genes. Oligomers containing 35 of these motifs have been shown experimentally to induce significant inclusion of A. thaliana exons. Second, integration of our regulatory motifs into two different splice site recognition programs significantly improved the ability of the software to correctly predict splice sites in a large database of confirmed genes. We have released GeneSplicerESE, the improved splice site recognition code, as open source software. Our results show that the use of the ESE motifs consistently improves splice site prediction accuracy.
    BMC Bioinformatics 02/2007; 8:159. · 3.02 Impact Factor
  • Mihaela Pertea, Steven Salzberg
    Algorithms in Bioinformatics, 7th International Workshop, WABI 2007, Philadelphia, PA, USA, September 8-9, 2007, Proceedings; 01/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Predicting complete protein-coding genes in human DNA remains a significant challenge. Though a number of promising approaches have been investigated, an ideal suite of tools has yet to emerge that can provide near perfect levels of sensitivity and specificity at the level of whole genes. As an incremental step in this direction, it is hoped that controlled gene finding experiments in the ENCODE regions will provide a more accurate view of the relative benefits of different strategies for modeling and predicting gene structures. Here we describe our general-purpose eukaryotic gene finding pipeline and its major components, as well as the methodological adaptations that we found necessary in accommodating human DNA in our pipeline, noting that a similar level of effort may be necessary by ourselves and others with similar pipelines whenever a new class of genomes is presented to the community for analysis. We also describe a number of controlled experiments involving the differential inclusion of various types of evidence and feature states into our models and the resulting impact these variations have had on predictive accuracy. While in the case of the non-comparative gene finders we found that adding model states to represent specific biological features did little to enhance predictive accuracy, for our evidence-based 'combiner' program the incorporation of additional evidence tracks tended to produce significant gains in accuracy for most evidence types, suggesting that improved modeling efforts at the hidden Markov model level are of relatively little value. We relate these findings to our current plans for future research.
    Genome biology 02/2006; 7 Suppl 1:S9.1-13. · 10.30 Impact Factor
  • Nature 01/2006; 439(7075):502-502. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.
    Nature 01/2006; 438(7071):1151-6. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.
    Genome Research 10/2005; 15(9):1284-91. · 14.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.
    Science 08/2005; 309(5731):134-7. · 31.20 Impact Factor

Publication Stats

7k Citations
673.34 Total Impact Points

Institutions

  • 1999–2012
    • Johns Hopkins University
      • • McKusick-Nathans Institute of Genetic Medicine
      • • Department of Computer Science
      Baltimore, MD, United States
  • 2006–2011
    • University of Maryland, College Park
      • Center for Bioinformatics and Computational Biology
      College Park, MD, United States
    • George Washington University
      Washington, Washington, D.C., United States
  • 2007
    • J. Craig Venter Institute
      Maryland, United States
  • 2000–2007
    • Biomedical Research Institute, Rockville
      Maryland, United States
  • 2004
    • National Human Genome Research Institute
      Maryland, United States